首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
1.234 1.243 1.324 . . . . . . +4.321 The addition problem above shows four of the 24 different integers that can be formed by us
1.234 1.243 1.324 . . . . . . +4.321 The addition problem above shows four of the 24 different integers that can be formed by us
admin
2022-10-18
49
问题
1.234 1.243 1.324 . . . . . . +4.321 The addition problem above shows four of the 24 different integers that can be formed by using each of the digits 1,2,3,and 4 exactly once in each integer. What is the sum of these 24 integers?
选项
A、24.000
B、26.664
C、40,440
D、60,000
E、66,660
答案
E
解析
Each digit 1,2, 3, and 4 will appear six times in each of 1,000s place, 100s place, 10s place, and units place. Since 1+2 + 3 + 4= 10,it follows that the sum of the 24 integers is (6)(10)(1,000) + (6)(10)(100) + (6)(10)(10) + (6)(10)(1) = 66,660.
The correct answer is E.
转载请注明原文地址:https://jikaoti.com/ti/odzYFFFM
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
HarrietBeecherStowehadpouredherheartintoheranti-slaverybook,"UncleTom’sCabin".Butneithershenorherfirstpubl
John:OhAnne,thatwasawonderfuldinner.That’sthebestmealI’vehadinalongtime.Anne:Oh,thankyou!Thankyouvery
"Hightech"and"stateoftheart"aretwoexpressionsthatdescribethemoderntechnology.Hightechisjustashorterwayofs
Treesareusefultomaninthreeimportantways:theyprovidehimwithwoodandotherproducts:theygivehimshade:andtheyhel
Whenwetalkaboutintelligence,wedonotmeantheabilitytogetgoodscoresoncertainkindsoftestsoreventheabilityto
Therearemanyolderpeopleintheworldandtherewillbemanymore.Alittle-knownfactisthatover60percentoftheolderp
Itwasacoldwinterday.AwomandroveuptotheRainbowBridgetollbooth(收费站)."I’mpayingformyself,andforthesixcarsb
Itcanbereallyfrustrating(使人沮丧的)foranoverweightpersontogotoagymandworkoutwithapositiveattitude.Allonehasto
What’sthemedianof3,6,5,1,6,7,8?
Whatwastheunitsdigitof1713-17?
随机试题
急性早幼粒细胞性白血病的分化诱导剂治疗,通常首选下列哪一种?
根据相关法律,下列情形可以收回承包地的是()。
管道直径1:2的两管串联,正反两方向流动流量相同,其局部损失:
慈禧太后曾亲书并赐给卧龙寺的匾额有()。
1923年出版的《稻草人》开创了中国现代童话创作之路,作者是()。
小学课外活动有哪些特点?()
人民法院宣告判决()。
艰苦奋斗的主旨是()
设f(u)连续,则∫0xdu∫u1vf(u2-v2)dv=______.
IsHeadphoneGoodforWork?A)MarissaYuworksinabusyoffice,surroundedby120co-workersinamostlyopenspace.Yetwhens
最新回复
(
0
)