首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与β1,β2,β3下的坐标相同,并求所有的ξ.
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与β1,β2,β3下的坐标相同,并求所有的ξ.
admin
2018-07-31
67
问题
设向量组α
1
,α
2
,α
3
为R。的一个基.β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
设非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标(列)向量为X,则 ξ=(α
1
,α
2
,α
3
)x=(β
1
,β
2
,β
3
)x=(α
1
,α
2
,α
3
)Px 由此得(α
1
,α
2
,α
3
)Px一(α
1
,α
2
,α
3
)x=(α
1
,α
2
,α
3
)(Px—x)=(α
1
,α
2
,α
3
)(P—E)x=0 因为矩阵(α
1
,α
2
,α
3
)可逆.所以(P—E)x=0,其中E为3阶单位矩阵。 因为x≠0,所以P—E是降秩矩阵, 对P—E施行初等行变换: [*] 可见,当且仅当k=0时方程组(P—E)x=0有非零解,且所有非零解为 x=[*],c为任意非零常数 故在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同的所有非零向量为 ξ=(α
1
,α
2
,α
3
)[*]=c(α
1
—α
3
),c为任意非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/oc2RFFFM
0
考研数学一
相关试题推荐
设α1=.(1)a,b为何值时,B不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,B可唯一表示为α1,α2,α3,α4的线性组合?
设f(x)在(0,+∞)内连续且单调减少.证明: ∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设向量场A=2x3yzi—x2y2zj一x2yz2k,则其散度divA在点M(1,1,2)沿方向l={2,2,一1}的方向导数(divA)|M=___________.
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设方阵A1与B1合同,A2与B2合同,证明:合同。
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
资料分类
在谈判中一般不应提出的问题:
Couldyoufindsomeone______?
实行企业化管理的事业单位和大中型企业()设置会计机构。
_________是传奇体裁或乡村体裁的带有音乐的舞台剧。
A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问A、B两校相距多少米?()
我们所强调的时代精神,是一个民族在新时期形成的思想观念、行为方式、价值取向、精神风貌和社会风尚的总和。其中居于核心地位的是
Themethodsoftestingaperson’sknowledgeandabilityremainasprimitiveasevertheywere.Afteralltheseyears,education
鼠标器、打印机和扫描仪等设备都有一个重要的性能指标,即分辨率,它用每英寸的像素数目来描述,通常用三个英文字母【 】来表示。
往该B树中插入关键码72后,该B树的第2层的结点数为从该B树中删除关键码30后,结点的子女数为
最新回复
(
0
)