首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
admin
2018-12-19
42
问题
用正交变换将二次型f(x
1
,x
2
,x
3
)=x
1
2
一2x
2
2
一2x
3
2
一4x
1
x
2
+4x
1
x
3
+8x
2
x
3
化为标准形,并给出所施行的正交变换。
选项
答案
二次型的矩阵为A=[*],特征多项式为 |λE一A|=[*]=(λ一2)
2
(λ+7), 矩阵A的特征值为λ
1
=一7,λ
2
=λ
3
=2。 由(λ
i
E一A)x=0(i=1,2,3)解得特征值λ
1
=一7和λ
2
=λ
3
=2对应的特征向量分别为 α
1
=(1,2,一2)
T
,α
2
=(一2,1,0)
T
,α
3
=(2,0,1)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以先将α
2
,α
3
正交化,即 β
2
=α
2
=(一2,1,0)
T
,β
3
=α
3
一[*] 再将α
1
,β
2
,β
3
单位化,即 [*] 那么令 Q=(γ
1
,γ
2
,γ
3
)=[*] 则二次型x
T
Ax在正交变换x=Qy下的标准形为一7y
1
2
+2y
2
2
+2y
3
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/oLWRFFFM
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=____________.
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
求函数的间断点,并指出其类型。
当0≤θ≤π时,对数螺旋r=eθ的弧长为_______。
对于实数x>0,定义对数函数依此定义试证:
随机试题
下列关于有限责任公司注册资本的说法,正确的是()
茶艺师与宾客交谈过程中,双方意见不相同的情况下,()表达直接的不同看法。
西班牙民族戏剧的奠基人是
最可能的诊断是若胃镜下所见溃疡面较大,周边不整齐,底部不平,触之质硬,黏膜脆易出血有可能是
患者刘某,平素情绪不畅,2天前生气后出现胁肋胀痛,走窜不定,胸闷喜叹息,纳食减少,暖气频作,舌苔薄白,脉弦。若此病例症见胁痛、肠鸣、腹泻,治宜加用
男性患者13岁,右舌下口底区出现肿物1个月。查右舌下区淡蓝色,半透明状肿物,质软,该患者穿刺液的特点为
A.附子理中丸B.济生肾气丸C.都气丸D.左归丸E.右归丸治疗虚劳肾阴虚证,应首选()
与心智技能相比,操作技能的特点有()
下列关于运算符重载的描述中,正确的是()。
Todaymanypeoplewholiveinlarge【S1】______areassuchasParisandNewYorkleavethecityinthesummer.Theygotothemount
最新回复
(
0
)