首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(a,+∞)内可导,求证: (Ⅰ)若χ0∈(a,+∞),f′(χ)≥α>0(χ>χ0),则=+∞; (Ⅱ)若f′(χ)=A>0,则f(χ)=+∞.
设f(χ)在(a,+∞)内可导,求证: (Ⅰ)若χ0∈(a,+∞),f′(χ)≥α>0(χ>χ0),则=+∞; (Ⅱ)若f′(χ)=A>0,则f(χ)=+∞.
admin
2019-08-12
26
问题
设f(χ)在(a,+∞)内可导,求证:
(Ⅰ)若χ
0
∈(a,+∞),f′(χ)≥α>0(χ>χ
0
),则
=+∞;
(Ⅱ)若
f′(χ)=A>0,则
f(χ)=+∞.
选项
答案
(Ⅰ)[*]χ>χ
0
,由拉格朗日中值定理,[*]∈(χ
0
,χ), f(χ)=f(χ
0
)+f′(ξ)(χ-χ
0
)>f(χ
0
)+α(χ-χ
0
), 又因[*] (Ⅱ)因[*]>0,由极限的不等式性质[*]χ
0
∈(a,+∞),当χ>χ
0
时f′(χ)>[*]>0,由题(Ⅰ)[*]f(χ)=+∞.
解析
转载请注明原文地址:https://jikaoti.com/ti/nuERFFFM
0
考研数学二
相关试题推荐
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=化成累次积分.
曲线y=的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
令lnx=t,则[*],当t≤0时,f(t)=t+C1;当t>0时,f(t)=et+C2.显然f’(t)为连续函数,所以f(t)也连续,于是有C1=1+C2,[*]
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP=A,A是对角矩阵.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
随机试题
高速钢车刀粗车时的切削速度应取为()m/min。
超声造影剂的应用领域有哪些
肝硬化腹水患者治疗必须遵循以下原则,但哪项除外
夜间急诊送来一无主无钱危急患者.值班医师应如何处置
关于政府采购邀请招标,下列说法正确的有()。[2013年真题]
大地水准面具有的特点是()。
商业银行管理战略是商业银行前进、发展的指路灯,指引商业银行的前进方向以及如何到达目的地。()
从本质上说,人类文明的进程就是不断脱离动物界的过程,这一过程主要包括人类体质的进化和心性的进化两个方面。从猿到人的体质进化,人类用了上百万年的时间才完成,而人类心性的进化则还要缓慢。当人类跨越石器时代、青铜时代进入铁器时代之后,动物性依然顽强地在人类身上闪
下列对前瞻性培训需求评估模型的说法错误的是()。
《中华人民共和国食品卫生法》的监督执法主体是()。
最新回复
(
0
)