已知函数y=f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 在(0,1)内存在两个不同的点η,ζ,使得f’(η)f’(ζ)=1。

admin2019-01-26  48

问题 已知函数y=f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
在(0,1)内存在两个不同的点η,ζ,使得f’(η)f’(ζ)=1。

选项

答案在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,则存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 [*] 于是 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/nsriFFFM
0

相关试题推荐
最新回复(0)