首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2018-08-12
34
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程.
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为Y—y=y’(X一x).它与x轴的交点为[*]由于y’(x)>0,y(0)=1,因此y(x)>1(x>0). 于是[*]又S
2
=∫
0
x
y(t)dt.根据题设2S
1
一S
2
=1,有[*]并且y’(0)=1,两边对x求导并化简得yy’’=(y’)
2
,这是可降阶的二阶常微分方程,令P(y)=y’,则上述方程可化[*]分离变量得[*]从而有 y=C
2
e
C1x
根据y’(0)=1,y(0)=1,可得C
1
=1,C
2
=1.故所求曲线的方程为y=e
x
.
解析
转载请注明原文地址:https://jikaoti.com/ti/nOWRFFFM
0
考研数学二
相关试题推荐
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设A=,B为三阶矩阵,r(B*)=1且AB=O,则t=_______.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
设f(x)=试确定常数a,b,c,使f(x)在x=0处连续且可导.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22一2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.求a,b的值;
设f(x)在[a,b]上可微,∈[a,b],a<f(x)<b,且f’(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
∫02πsinnxcosmxdx(自然数n或m为奇数)=_________.
随机试题
当事人一方违反合同的赔偿责任,应当()另一方因此所受到的损失。
患者,男性,46岁。发现口渴、多饮、消瘦3个月,突发昏迷2日。血糖30mmol/L,血钠132mmol/L,血钾4.0mmol/L,尿素氮9.8mmoL/L,CO2结合力18.3mmoL/L,尿糖、尿酮体强阳性。治疗8小时后,患者神志渐清,血糖降低12
重度哮喘时病人常出现心率快,为防止加重心脏负担,应限制液体人量在1000ml内。
某多层工业砌体房屋,采用墙下钢筋混凝土条形基础:其埋置深度为1.2m,宽度为1.5m,场地土层分布如下图所示:地下水位标高为-1.2m。当基础顶面处承受的竖向力设计值为159kN时,试确定基础的最大弯矩设计值最接近()项数值。
消费者协会的职能不包括()。
中国历代异常发达的政治哲学和历史哲学早就无数次的告诫世人:权利的私有及日益专横,只能导致万民涂炭、王朝崩溃的惨祸。但是所有这些深痛剖析永远难以进入法律层面而成为制约统治权利的刚性力量,所以它们只能转而定型为一种“代偿”方式,即思辩、文学和伦理等领域中的深深
Weareawareofthepotentialproblems.
Howmuchdideachbottleofwhiskycost?
WhatisJanegoingtostudythisterm?
Heisthekindofpersonwhostopsatnothinginorderto______hisownpurpose.
最新回复
(
0
)