若函数f(x)在[0,1]上二阶可微,且f(0)=f(1),|f’’(x)|≤1,证明:|f’(x)|≤在[0,1]上成立.

admin2016-09-12  40

问题 若函数f(x)在[0,1]上二阶可微,且f(0)=f(1),|f’’(x)|≤1,证明:|f’(x)|≤在[0,1]上成立.

选项

答案由泰勒公式得 f(0)=f(x)+f’(x)(0-x)+[*](0-x)2,其中ξ介于0与x之间; f(1)=f(x)+f’(x)(1-x)+[*](1-x)2,其中η介于1与x之间, 两式相减得f’(x)=[*] 从而[*][x2+(1-x)2], 由x2≤x,(1-x)2≤1-x得x2+(1-x)2≤1,故|f’(x)|≤1.

解析
转载请注明原文地址:https://jikaoti.com/ti/n6zRFFFM
0

最新回复(0)