首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=。 证明存在ξ∈(0,),η∈(,1),使得f’(ξ)+f’(η)=ξ2+η2。[img][/img]
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=。 证明存在ξ∈(0,),η∈(,1),使得f’(ξ)+f’(η)=ξ2+η2。[img][/img]
admin
2020-03-16
42
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
。
证明存在ξ∈(0,
),η∈(
,1),使得f’(ξ)+f’(η)=ξ
2
+η
2
。[img][/img]
选项
答案
令[*],则F(1)=F(0)=0。 在区间[*]和[*]上分别应用拉格朗日中值定理, [*] 将上面两个等式相加 [*] 即 F’(ξ)+F’(η)=f’(ξ)一ξ
2
+f’(η)一η
2
=0, 整理后得 f’(ξ)+f’(η)=ξ
2
+η
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/mrARFFFM
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,证明:∫abf(x)dx∫xbf(y)dy=[∫abf(x)dx]2.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
已知齐次线性方程组其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img]方程组有非零解,在有非零解时,求此方程组的一个基础解系。
计算定积分I=(a>0,b>0).
[2016年]设D是由直线y=l,y=x,y=一x围成的有界区域,计算二重积分dxdy.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y′(0)=3/2的解.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程;
随机试题
长篇叙事诗《金云翘传》是
神经过程的基本特征是什么?
会计工作组织包括()
A.空肠造瘘B.经鼻胃管C.胃造瘘D.经鼻空肠管E.经鼻十二指肠管需长期肠内营养的十二指肠外瘘患者在术中应对其进行
强刺激性的化疗药物,给药途径是
诊断新生儿缺氧缺血性脑病常用的辅助检查应除外
企业经营创新主要包括()。
甲、乙、丙三国都是航空方面《海牙公约》和《蒙特利尔公约》的缔约国,乙国公民将登记在丙国的航空器劫持到甲国,航空器在甲国降落,有关这一空中劫持的引渡,下列哪个选项错误?
城市规划中的统计分析方法有()。
(2013年浙江工商大学)请根据下列要求计算零息债券的到期收益率:当前1年期零息债券的到期收益率为4%,2年期零息债券的到期收益率为30%。根据利率期限结构的纯预期理论,请计算未来1年零息债券的到期收益率。
最新回复
(
0
)