记正三角形的内切圆半径与其外接圆半径之比为m,正方体内切球的半径与外接球的半径之比为n,则m,n分别为( ).

admin2019-06-12  24

问题 记正三角形的内切圆半径与其外接圆半径之比为m,正方体内切球的半径与外接球的半径之比为n,则m,n分别为(    ).

选项 A、 
B、 
C、 
D、 
E、 

答案D

解析 正三角形四心合一(外心,内心,重心,垂心),如图所示.

,即m=
设内切球的半径为1,则正方体的棱长为2,
外接球的直径为
外接球的半径为√3,则n=
转载请注明原文地址:https://jikaoti.com/ti/mWjUFFFM
0

相关试题推荐
最新回复(0)