首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2016-10-21
26
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
即证[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ>0.考察F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt, 若能证明F(χ)>0(χ∈(0,1])即可.这可用单调性方法. 令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(χ)在[0,1]可导,且 F(0)=0,F′(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 由条件知,f(χ)在[0,1]单调上升,f(χ)>f(0)=0(χ∈(0,1]),从而F′(χ)与g(χ)=2∫
0
χ
f(t)dt-f
2
(χ)同号.再考察 g′(χ)=2f(χ)[1-f′(χ)]>0(χ∈(0,1)), g(χ)在[0,1]连续,于是g(χ)在[0,1]单调上升,g(χ)>g(0)=0(χ∈(0,1]),也就有F′(χ)>0(χ ∈(0,1]),即F(χ)在[0,1]单调上升,F(χ)>F(0)=0(χ∈(0,1]).因此 F(1)=[∫
0
χ
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0. 即结论成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/lBzRFFFM
0
考研数学二
相关试题推荐
0
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
设f(x)在[a,+∞)上连续,f(a)<0,而limf(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设,其中f具有二阶连续偏导数,g具有二阶连续导数,求.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设矩阵A与B相似,且求a,b的值;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
随机试题
教师组织孩子记忆一组材料时,会引导他们进行分类记忆。这种记忆策略属于()
常用控制支气管哮喘急性发作药物的作用,下列正确的是
患者,缺失,行双端固定桥修复。固定桥试戴时,用力戴入后。邻牙出现胀痛,最可能的原因是
下列哪项不是骨折晚期并发症
1999年10月,李某从某服装贸易公司买了一套价值800元的好质量西装,穿了一个星期后,他送到某干洗店干洗,干洗店收取干洗费6元。几天后,李某去取衣时,发现该衣服多处染色。而且衣扣也掉了好几颗,遂要求该干洗店赔偿。该干洗店指着取衣凭条上的“说明”说:“根据
下列属于施工准备阶段建设监理工作的主要任务的是( )。
由于短期内房地产市场上的房地产商品供应量不能得到较快的调整,房屋租金和售价主要由()所决定。
Internet的地址主要有IP和域名两种方式,下面地址表示不正确的是()。
()是山东电视台摄制的根据梁晓声同名小说改编的电视连续剧。
Somesaythatnothingismorevividormemorablethanapicture.Wedisagree.Novisualimageisasvividastheimagecreatedb
最新回复
(
0
)