首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
admin
2021-02-25
31
问题
验证α
1
=(1,-1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(-9,-8,-13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且 x
11
α
1
+x
21
α
2
+x
31
α
3
=β
1
, x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得 [*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且 2α
1
+3α
2
-α
3
=β
1
, 3α
1
-3α
2
-2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://jikaoti.com/ti/kjARFFFM
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设0<k<1,f(x)=kx一arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度b时(如图1—3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
建设新型人民军队的根本原则是()
治疗湿热黄疽,宜选用的药物是()治疗湿热淋证,小便淋沥涩痛,宜选用的药物是()
背景资料某建设单位投资兴建住宅楼,建筑面积12000m2,钢筋混凝土框架结构,地下1层,地上7层,土方开挖范围内有局部滞水层。经公开招投标,某施工总承包单位中标。双方根据《建设工程施工合同(示范文本)》GF—2013—0201签订施工承包合同。合
建设工程项目进度控制的管理措施包括()等。
背景资料某高速公路项目,路面面层为沥青混凝土,基层为级配碎石,项目经理部决心精心组织、科学施工,搞好现场技术质量管理,做了包括如下环节的工作:——项目经理部由总工程师组织进行了技术交底;——为真正落实公司的现场技术管理制度制定了执行细则,其中,为避免
多用途干粉灭火剂可用于扑灭()火灾。
(2006年真题)在对运用印张定价法测算出的图书价格作调整时,下列因素中不必考虑的是()。
提出“建国君民,教学为先”主张的著作是()。
道德建设的核心问题,实质是()
Foreigncurrencycanbe_____forRMBatanybankinChina.
最新回复
(
0
)