首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
admin
2018-04-14
72
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"
xy
(x,y)dxdy。
选项
答案
将二重积分[*]xyf"
xy
(x,y)dxdy转化为累次积分可得 [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y、)dx。 首先考虑∫
0
1
xyf"
xy
(x,y)dx,注意这里是把变量y看做常数的,故有 ∫
0
1
xyf"
xy
(x,y)dx=y∫
0
1
xdf’
y
(x,y)=xyf’
y
(x,y)|
0
1
-∫
0
1
yf’
y
(x,y)dx =yf’
y
(1,y)-∫
0
1
yf’
y
(x,y)dx。 由f(1,y)=f(x,1)=0易知f’
y
(1,y)=f’
x
(x,1)=0。 故 ∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
yf’
y
(x,y)dx, [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
dy∫
0
1
yf’
y
(x,y)dx, 对该积分交换积分次序可得 -∫
0
1
dy∫
0
1
yf’
y
(x,y)dx=-∫
0
1
dx∫
0
1
yf’
y
(x,y)dy。 再考虑积分∫
0
1
yf’
y
(x,y)dy,注意这里是把变量x看作常数的,故有 ∫
0
1
yf’
y
(x,y)dy=∫
0
1
ydf(x,y)=yf(x,y)|
0
1
-∫
0
1
f(x,y)dy=-∫
0
1
f(x,y)dy。 因此 [*]xyf"
xy
(x,y)dxdy=-∫
0
1
dx∫
0
1
代0t,小dxdyyf’
y
(x,y)dy=∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://jikaoti.com/ti/kDdRFFFM
0
考研数学二
相关试题推荐
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设周期函数f(x)在(﹣∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
曲线渐近线的条数为().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
化二重积分为二次积分(写出两种积分次序).(1)D={(x,y)||x|≤1,|y|≤1}.(2)D是由y轴,y=1及y=x围成的区域.(3)D是由x轴,y=lnx及x=e围成的区域.(4)D是由x轴,圆x2+y2-2x=0在第一象限的部分及直线x
设函数f(x,y)连续,则二次积分f(x,y)dy等于().
(2010年试题,20)计算二重积分其中
(2011年试题,二)设平面区域D由直线y=x,圆x2+y2=2y及y轴所组成,则二重积分
设f(x,y)为连续函数,则等于
随机试题
事件
代沟美国有,中国也有。
房地产开发是通过多种资源的组合使用而为人类提供入住空间,并改变人类生存的物质环境的一种活动。这里的资源不包括()。
将室外工程划分为附属建筑及室外环境和室外设施两个单位工程,其目的之一为()。
根据案例,回答下列题目:飞龙公司2000年成立,其主要业务是生产并对外出口各种玩具。公司的总资产为5000万元,其中包括4座总价值1000万元的厂房,目前正在使用。公司要在新开发区中建设新厂房,此项工程已经开工,并且将于2008年底完工。公司教保了
下面4个点中,在直线x+y-1=0上且到点A(-2,3)的距离等于的点是[].
在调试VBA程序时,能自动被查出来的错误是
TheAmericanDream:MythorRealityI.Coiningoftheterm:A.becamewidelyused(1)______B.firstappearedina(2)______writ
______(他试图劝她打消离职的念头),butshesaidshewasresolvedtogobecauseshehadthoughtaboutitoverandoveragain.
A、Aboutsevenmillion.B、HalfoftheAmericanpopulation.C、25%ofAmericanpeople.D、About25million.A
最新回复
(
0
)