首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
admin
2018-11-21
25
问题
设f(x)在[x
1
,x
2
]可导,0<x
1
<x
2
,证明:
ξ∈(x
1
,x
2
)使得
选项
答案
令F(x)=[*],则f(x)在[x
1
,x
2
]可导,又F(x
1
)=[*][f(x
2
)—l], F(x
1
)一F(x
2
)=[*][f(x
1
)x
2
一f(x
2
)x
1
一l(x
2
一x
1
)]=0. 因此,由罗尔定理,[*]ξ∈(x
1
,x
2
),使得 F’(ξ)=[*][ξf’(ξ)一f(ξ)+l]=0, 即 f(ξ)一ξf’(ξ)=1.
解析
令l=
ξ∈(x
1
,x
2
)使得l=f(ξ)一ξf’(ξ)←→xf’(x)一f(x)+l在(x
1
,x
2
)存在零点←→f’(x)一
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点.
转载请注明原文地址:https://jikaoti.com/ti/k02RFFFM
0
考研数学一
相关试题推荐
计算曲面积分xz2dydz+x2ydzdx+y2zdxdy,其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2).如果二阶行列式Y=的方差D(Y)=,则σ2=___________.
设平面π的方程为2x—y+z一2=0,直线l的方程为则π与l的位置关系是__________.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=().
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,-∞<x<+∞,则λ的最大似然估计量=______。
设L为曲线y=上从O(0,0)到的曲线段,则cosy2dx-2xysiny2dy=_______。
设方阵A1与B1合同,A2与B2合同,证明:合同。
过椭圆3x2+2xy+3y2=1上任意一点作椭圆的切线,试求该切线与两坐标轴所围成的三角形面积的最小值。
设n为正整数,f(x)=xn+x一1.证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
随机试题
A.相乘B.相克C.子病犯母D.相侮E.母病及子(2002年第73,74题)
从迁移的性质和发生的方向看,倒摄抑制属于______迁移。
A.青霉素B.红霉素C.氯霉素D.林可霉素E.头孢他定治疗肺炎支原体肺炎应选用
女性,40岁。反复手关节痛1年,曾诊断为类风湿关节炎,间断使用理疗和非甾体抗炎药,症状有缓解。近1个月来低热,关节痛加重,肘后出现多个皮下结节,检查.ESR40mm/h,心脏彩超发现小量心包积液。考虑为类风湿关节炎活动对疾病活动诊断最有意义的检查
年末结转后,“利润分配”账户的贷方余额表示()。
下列关于深加工结转申报的表述错误的是:
散客旅游同团队旅游的主要区别是()
海淀社区居民委员会多年来秉持为一心一意为社区居民服务的宗旨,在其职能范围内为社区居民做了大量的实事,并赢得了居民的一致好评。关于海淀社区居民委员会的主要职能,下列说法错误的是()。
有以下程序#includemain(){intx=1,y=2,z=3;if(x>y)if(y
ClimateChangeClimatechangeiswithus.Adecadeago,itwasconjecture.Nowthefutureisunfoldingbeforeoureyes.Cana
最新回复
(
0
)