设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/(1-ξ).

admin2022-10-09  32

问题 设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/(1-ξ).

选项

答案令φ(x)=(x-1)2f’(x),显然φ(x)在[0,1]上可导.由f(0)=f(1)=0,根据罗尔定理,存在c∈(0,1),使得f’(c)=0,再由φ(c)=φ(1)=0,根据罗尔定理,存在ξ∈(c,1)∈(0,1),使得φ’(ξ)=0,而φ’(x)=2(x-1)f’(x)+(x-1)2f"(x),所以2(ξ-1)f’(ξ)+(ξ-1)2f"(ξ)=,整理得f"(x)=2f’(ξ)/(1-ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/jsfRFFFM
0

最新回复(0)