首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 (I)证明:向量组β,Aβ,A2β线性无关; (Ⅱ)如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 (I)证明:向量组β,Aβ,A2β线性无关; (Ⅱ)如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
admin
2020-05-16
54
问题
设A为三阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
。
(I)证明:向量组β,Aβ,A
2
β线性无关;
(Ⅱ)如果A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|。
选项
答案
(I)设k
1
,k
2
,k
3
,是实数,满足k
1
β+k
2
Aβ+k
3
A
2
β=0,根据已知有Aα
i
=λ
i
α
i
,(i=1,2,3),所以Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
,将上述结果代入k
1
β+k
2
Aβ+k
3
A
2
β=0可得(k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0。 α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,则三个向量必定线性无关,因此[*]由于该线性方程组的系数矩阵的行列式[*],因此k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关。(H)根据A
3
β=Aβ可得[*] 令P=(β,Aβ,A
2
β),则矩阵P是可逆的,[*],根据相似矩阵的秩及行列式相等,有[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/jqaRFFFM
0
考研数学三
相关试题推荐
设求曲线y=f(x)与x轴所围图形面积.
计算
求函数f(x,y)=xy(a一x—y)的极值.
设f(x)=3x2+Ax一3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
求
设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.
若n个人站成一行,其中有A、B两人,问夹在A、B之间恰有r个人的概率是多少?如果n个人围成一个圆圈,求从A到B的顺时针方向,A、B之间恰有r个人的概率.
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α线性无关.
指出下列算式的错误所在:(1)由分部积分法知
设f(x)在(a,b)内二阶可导,且a<x1<x2<b.(Ⅰ)若x∈(a,b)时f"(x)>0,则f(x)<(x2)(2.17)对任何x∈(x1,x2)成立;(Ⅱ)若x∈(a,b)时f"(x)<0,则f(x
随机试题
临床上现用作紧急避孕的药物是
()是研究产业结构变动规律和探求其合理化的重要依据。
我国项目建设程序中,大型复杂工程项目的设计分为()。
制定城市、镇控制性详细规划的基本程序中,组织编制机关将规划草案予以公告,并采取论证会、听证会或者其他方式征求专家和公众的意见,公告的时间不得少于()日。
预应力筋放张时,混凝土强度应符合设计要求;当设计无要求时,不应低于设计的混凝土立方体抗压强度标准值的( )。
下列明显不应被列入商业银行交易账户头寸的是()。
根据下列材料回答问题。下列判断不正确的是()。
在我国的货币层次划分中,一般将“外币存款”划入如下哪个层次?()
人生价值实现的个人条件是
ProductionPlannerWantedApplicantsforthepostofProductionPlannershouldbecollegegraduateswithatleasttwoyears
最新回复
(
0
)