首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
admin
2017-11-30
33
问题
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x
2
-2xy-4y
2
,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每吨还需支付排污费2万元。
(Ⅰ)在不限制排污费用支出的情况下,这两种产品的产量各为多少时总利润最大?总利润是多少?
(Ⅱ)当限制排污费用支出总和为6万元的情况下,这两种产品的产量各为多少时总利润最大?最大利润是多少?
选项
答案
(Ⅰ)总利润函数L(x,y)为 L(x,y)=R(x,y)-C(x,y)-x-2y=14x+32y-x
2
-2xy-4y
2
-36。 求L(x,y)的驻点,令 [*] 可解得唯一驻点x=4,y=3,且此时L(x,y)=40。 因驻点唯一,且实际问题必有最大利润,故计算结果表明,在不限制排污费用支出的情况下,当甲、乙两种产品的产量分别为x=4(吨)和y=3(吨)时,总利润达到最大值,且总利润是40万元。 (Ⅱ)求总利润函数L(x,y)在约束条件x+2y=6下的最大值,可用拉格朗日乘数法。引入拉格朗日函数 F(x,y,λ)=L(x,y)+λ(x+2y-6), 求F(x,y,λ)的驻点,令 [*] 可解得唯一驻点x=2,y=2,且此时L(x,y)=28。 因驻点唯一,且实际问题必有最大利润,故计算结果表明,当排污费用限于6万元的情况下,两种产品的产量均为2吨时总利润最大,最大利润为28万元。
解析
转载请注明原文地址:https://jikaoti.com/ti/jHKRFFFM
0
考研数学三
相关试题推荐
=________
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
试讨论函数在点x=0处的连续性.
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
设随机变量X与Y相互独立,且X~N(0,σ12),Y~N(0,σ12),则概率P{|X-Y|<1}()
设二维随机变量(X,Y)在区域上服从均匀分布,则(X,Y)的关于X的边缘概率密度fx(x)在点x=e处的值为________.
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
下列命题正确的是()
若则().
随机试题
隐孢子虫在人体主要寄生部位是
流行性感冒的传染源主要是
承受横向均布荷载q和轴向拉力F的矩形截面简支梁如图所示。已知荷载q=2kN/m。F=8kN,跨长l=4m,截面尺寸b=120mm,h=180mm,则梁中的最大拉应力σt,max与最大压应力σc,max分别为()。
(2008年)弹簧一物块直线振动系统(见图4—79)中,物块质量m,两根弹簧的刚度系数各为k1与k2,若用一根等效弹簧代替这两根弹簧,则其刚度系数k为()。
伪造会计凭证,是指用涂改、挖补等手段来改变会计凭证的真实内容,歪曲事实真相的行为。()
下列各项业务中,不会引起期末存货的账面价值发生增减变动的是()。
当今教师在教学中提倡反思性教学,是古代先贤什么行为在当代的延伸()。
某元件导纳的有名值为Y=G+jB,当基准值功率为SB,电压为UB时,电导的标幺值为()。
Whomostlikelyisthewoman?
A、Shedefinesitassatisfyingwithoneself.B、Shedefinesitaspursuingcareerpromotion.C、Shedefinesitasearningahighi
最新回复
(
0
)