设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ"(∈)=0.

admin2021-10-18  27

问题 设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ"(∈)=0.

选项

答案φ(0)=φ(1)=0,由罗尔定理,存在ξ1∈(0,1),使得φ’(ξ1)=0,而φ’(x)=2xf(x)+x2f’(x),φ’(0)=φ’(ξ1)=0,由罗尔定理,存在ξ∈(0,ξ1)∈(0,1),使得φ"(ξ)=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/izlRFFFM
0

最新回复(0)