首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
admin
2017-09-07
28
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足zf’’(x)+3x[f’(x)]
2
=1-e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
n()
(x)在点x
0
=-(n+1)处取得极小值.
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=f’(ξ)(x-a),则
由f’’(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f’’(x
0
)>0,于是由f’(x
0
)=0与f’’(x
0
)>0得f(x)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’-2yy’+xy’+y-x=0, ①
再求导,得
(3y
2
-2y+z)y’’+(6y-2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点
x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y’’|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://jikaoti.com/ti/ifVRFFFM
0
考研数学一
相关试题推荐
设函数f(x,y)在区域D:x2+y2≤1上有二阶连续偏导数,且又Cr是以原点为心,半径为r的圆周,取逆时针方向,求
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,其中f,g,h对各变量有连续的偏导数,且,求
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从点O到A的积分I=∫I(1+y3)dx+(2x+y)dy的值最小.
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设A,B为两个随机事件,则=_________.
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足且f(0)
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.
一实习生用一台机器接连生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
10个同规格的零件中混人3个次品,现在进行逐个检查,则查完5个零件时正好查出3个次品的概率为________.
随机试题
从基金管理人的角度来看,基金运作活动包含()。Ⅰ.基金的募集Ⅱ.基金的投资管理Ⅲ.基金份额持有人大会
建设工程必须满足特定的使用功能,并具有在规定的时间和条件下完成规定功能的能力和达到规定要求的使用年限,可用于描述这些要求的质量特性有()
以下所列集成电路中,属于数字集成电路的有()。
根据我国宪法和法律的规定,下列哪些说法不正确?()
第一次对“三个有利于”标准作出完整表述,是在()。
下列选项中最适合填入图形空缺处,使整幅图形呈现一致的规律性的是()。
我们的企业领导者必须清醒地认识到,企业固然要顾及股东的利益,尽可能实现股东利益的最大化,但是,企业在获得社会资源进行生产的同时,也就承担了对社会各方面利益相关者的责任。是否充分考虑了这些利益相关者的利益,已日益成为评价企业绩效和企业伦理的重要尺度。对这段
Everyhumanbeinghasuniquearrangementofskinonhisfingersandthisarrangementisunchangeable.Scientistsandexpertshav
“千兆以太网”通常是一种高速局域网,其网络数据传输速率大约为()。
Whattaskhasbeendistributedtoeachperson?TasksAAcknowledgementBMethodologyCBibliographyDLiteraturereviewERe
最新回复
(
0
)