首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
admin
2018-11-11
56
问题
证明线性方程组
(Ⅰ)有解的充分必要条件是方程组
(Ⅲ)是同解方程组.
选项
答案
[*] 方程组(Ⅰ)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为A
T
Y=0及[*]Y=0. 若方程组(Ⅰ)有解,则r(A)=r(A[*]b),从而r(A
T
)=r[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解; 反之,若(Ⅱ)与(Ⅲ)同解,则r(A
T
)=r[*],从而r(A)=r(A[*]b),故方程组(Ⅰ)有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/iaWRFFFM
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为求Anβ(n为自然数).
若4阶矩阵A与B相似,矩阵A的特征值为见行列式|B-1一E|=_________.
设(x,y)是平面区域D={(x,y)|x|<1,|y|<1}上的随机点.求关于t的方程t2+xt+y=0有两个正实根的概率.
(1)证明当|x|充分小时,不等式0≤tan2x一x2≤x4成立;(2)设
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
计算,其中L是由曲线x2+y2=2y,x2+y2=4y,所围成的区域的边界,按顺时针方向.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
已知f(x)在x=0的某个邻域内连续,且则在点x=0处f(x)()
一链条悬挂在一钉子上,启动时一端离开钉子8m,另一端离开钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:(1)不计钉子对链条的摩擦力;(2)若摩擦力为常力且其大小等于2m长的链条所受到的重力.
随机试题
A、补益肺肾,纳气平喘B、益气回阳,救阴固脱C、清肺豁痰,补肾固脱D、扶阳固脱,镇摄肾气D考点为正虚喘脱证:喘逆剧甚,张口抬肩,鼻扇气促,端坐不能平卧,稍动则咳喘欲绝,或有痰鸣,心慌动悸,烦躁不安,面青唇紫,汗出如珠,肢冷,脉浮大无根,或见歇止,或
患者,男,75岁。便秘10多年,大便5~7天一次,因60小时前突发下腹剧痛住院。痛呈持续性伴阵发性加剧;腹胀明显,无呕吐,病后无肛门排气。检查:T37.5℃,P92次/分,R20次/分,BP24/13.5kPa(180/100mmHg);下腹膨隆,尤以左侧
布比卡因的化学结构是
Mn2+的外层电子排布是()。
一、背景A公司承担某小区的数栋高层住宅楼和室外综合体工程的机电安装工程施工任务。A公司将小区热力管网工程分包给业主指定的B公司,其管材和阀门由A公司采购供应。B公司承建的热力管网安装完毕后,于2010年8月向业主提出竣工验收并通过;A公
司机纸是出口货物报关单的随附单证之一。()
()是我国最具热带海洋气候特色的地方,全年暖热,雨量充沛,干湿季节明显,台风活动频繁,气候资源多样。
对于新民主主义向社会主义的过渡,毛泽东及其他党的领导人先后有过的思路是
Asusual,whentheWestglamorizessomethingforcommercialpurposes,thewholeweightofthecommunicationmediahasbeenthrow
Therewasatimewhenparentswhowantedaneducationalpresentfortheirchildrenwouldbuyatypewriter,aglobeoraset
最新回复
(
0
)