设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是 ( )

admin2019-02-01  47

问题 设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是  (    )

选项 A、y=f(x)+Ce-f(x)
B、y=f(x)+1+Ce-f(x)
C、y=f(x)一C+Ce-f(x)
D、y=f(x)一1+Ce-f(x)

答案D

解析 由一阶非齐次线性微分方程的通解公式得
           
转载请注明原文地址:https://jikaoti.com/ti/iVWRFFFM
0

最新回复(0)