首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
admin
2018-07-30
51
问题
(2017年)设为3阶矩阵.P=(α
1
,α
2
,α
3
)为可逆矩阵,使得P
-1
AP=
,则A(α
1
+α
2
+α
3
)=
选项
A、α
1
+α
2
.
B、α
2
+2α
3
.
C、α
1
+α
3
.
D、α
1
+2α
2
.
答案
B
解析
方法1:由已知的P
-1
AP=
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
.
[α
1
,Aα
2
,Aα
3
]=[0 α
2
2α
5
]
Aα
1
=0,Aα
2
=α
2
,A
3
=2α
4
A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=0+α
2
+2α
3
=α
2
+2α
3
故只有选项(B)正确.
方法2:由题设条件知方阵A相似于对角阵diag{0,1,2},因此A的特征值为0.1,2,而矩阵P的3个列向量依次为对应的特征向量,即有
Aα
1
=0,Aα
2
=α
2
,Aα
3
=2α
3
从而有
A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=0+α
2
+2α
3
=α
2
+2α
3
转载请注明原文地址:https://jikaoti.com/ti/iHWRFFFM
0
考研数学二
相关试题推荐
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
LatelyIhavebeennoticingthegreatnumberofelectricalappliances(电器)onthemarket.Itseemstomethatthereare【C1】______n
关于医疗用毒性药品的说法中,正确的是
A、窦房结B、心房肌C、房室交界D、心室肌E、浦肯野纤维自律性最高的是
装配式预应力混凝土水池的吊装方案应包括()。
根据《刑法》规定,下列有关逃税罪的表述中错误的是()。
张某于2008年2月份将其自有的房屋出租给李某居住,租期2年,年租金18000元。1月份张某因房屋陈旧而进行了简单维修,发生维修费用1200元(取得合法有效凭证)。除个人所得税外,暂不考虑其他税费。则张某2008年3月份应缴纳个人所得税额()元。
下列有关项目组内部讨论的说法中,错误的是()。
茶叶,任人掐、压、烘、揉、开水冲泡。却默默地忍受而从无怨尤。在火烹水煎里酿成人世永存的甘甜与清芬,释放出生命的价值。对此,请谈谈你的认识。
改革开放的目的就是要
TheearlyretirementofexperiencedworkersisseriouslyharmingtheU.S.economy,accordingtoanewreportfromtheHudsonIn
最新回复
(
0
)