首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2019-06-28
17
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
)收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: [*].则x
n
y
n
=1,于是{x
n
,y
n
}收敛. [*]则x
n
y
n
=(一1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
)的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式[*]便得到{y
n
}收敛于零,这与假设矛盾.若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
)可能收敛,也可能发散,如③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=1一(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://jikaoti.com/ti/hjLRFFFM
0
考研数学二
相关试题推荐
求不定积分ln(1+x2)dx。
设函数μ=f(x,y)具有二阶连续偏导数,且满足等式=0,确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为=0。
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为A*一|AT|A-1,则k=________。
计算下列反常积分(广义积分)。∫3+∞;
求函数f(x)=,所有的间断点及其类型。
设矩阵A=,三阶矩阵B满足ABA*=E—BA-1,试计算行列式|B|。
已知的一个特征向量。求参数a,b及特征向量p所对应的特征值;
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设函数u(x,y)在有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足=0,则()
随机试题
A.舌质嫩胖,苔白润滑B.舌淡胖嫩,苔黄滑C.舌边青或有瘀点D.舌绛少苔,有裂纹热伤营阴可见
在同样的工作环境下,用可逆热机开动的火车比不可逆热机开动的火车跑得快。 ()
肝气犯胃型胃痛取太冲所依据的取穴原则是
贲门周围血管离断术需离断的血管中不包括
监理单位的义务包括()。
某施工单位对其编制的投标文件享有的权利,不包括( )。
从外单位取得的原始凭证如果丢失,可由当事人写出详细情况,由经办单位会计机构负责人、会计主管人员和单位负责人批准后,代作原始凭证。()
人身权包括人格权和身份权,下列属于身份权的是()。
2013年9月,销售完成环比变化超过3%的车型有()个。
下列字符数组初始化语句中,不正确的是()。
最新回复
(
0
)