首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意分片光滑的有向闭合曲面片S,均有 (y+1)f′(χ)dydz+(y-y2)f(χ)dzdχ+[zyf′(χ)-2zeχ]dχdy=0, 其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
设对任意分片光滑的有向闭合曲面片S,均有 (y+1)f′(χ)dydz+(y-y2)f(χ)dzdχ+[zyf′(χ)-2zeχ]dχdy=0, 其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
admin
2017-11-30
25
问题
设对任意分片光滑的有向闭合曲面片S,均有
(y+1)f′(χ)dydz+(y-y
2
)f(χ)dzdχ+[zyf′(χ)-2ze
χ
]dχdy=0,
其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
选项
答案
令p(χ,y)=(y+1)f′(χ),Q(χ,y)=(y-y
2
)f(χ),R(χ,y)=zyf′(χ)-2ze
χ
, 由于f(χ)在(-∞,+∞)内具有连续的二阶导数,故p(χ,y),Q(χ,y),R(χ,y)均具有一阶连续偏导,故由高斯公式可知, [*](y+1)f′(χ)dydz+(y-y
2
)f(χ)dzdχ+[zyf′(χ)-2ze
χ
]dχdy =±[*][(y+1)f〞(χ)+(1-2y)f(χ)+yf′(χ)-2e
χ
]dχdydz=0。 其中,Ω是由闭合曲面S所围成的区域,由区域Ω的任意性可知, (y+1)f〞(χ)+(1-2y)f(χ)+yf′(χ)-2e
χ
=0, 即y[f〞(χ)+f′(χ)-2f(χ)]+[f〞(χ)+f(χ)-2e
χ
]=0, 则有f〞(χ)+f′(χ)-2f(χ)=0 (1) f〞(χ)+f(χ)-2e
χ
=0 (2) 求解微分方程(1),得f(χ)=C
1
e
χ
+C
2
e
-2χ
,则该通解同样满足微分方程(2),代入可得C
1
=1,C
2
=0,故f(χ)=e
χ
。
解析
转载请注明原文地址:https://jikaoti.com/ti/hhVRFFFM
0
考研数学一
相关试题推荐
求
积分()
试证明:曲线恰有三个拐点,且位于同一条直线上.
防空洞的截面拟建成矩形加半圆(如图1.2—1),截面的面积为5平方米,问底宽x为多少时才能使建造时所用的材料最省?
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=.求
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设X,Z是否相互独立?为什么?
利用格林公式计算∫L(exsiny+x—y)dx+(excosy+y)dy,其中L是圆周y=(a>0)上从点A(2a,0)到点O(0,0)的弧段.
已知,则秩r(AB+2A)=________。
随机试题
行政处罚明显不当,或者其他行政行为涉及对款额的确定、认定确有错误的,人民法院可以判决变更。()
2002年,甲、乙两村发生用地争议,某县政府召开协调会并形成会议纪要。2008年12月,甲村一村民向某县政府申请查阅该会议纪要。下列选项中正确的是()。
A.大便为水样便B.黏液脓血便C.不消化样大便D.米泔水样便E.果酱样大便阿米巴病人
血清学试验的前带现象是指
A.风邪B.寒邪C.湿邪D.燥邪E.火邪
英国发动鸦片战争的主要目的是()。
传统计价模式的工、料、机消耗量是根据()综合测定的。
《物权法》对于物保与人保并存的情况(即同一债权既有保证又有第三人提供物的担保)确立了()的处理规则。
如某投资组合由收益率呈完全负相关的两只股票构成,则()。
分时操作系统的主要特点是( )。
最新回复
(
0
)