首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在区间(-∞,+∞)内f(x)与g(x)均可导,且f(x)<g(x),a,b,x0都是实数,则( )。
设在区间(-∞,+∞)内f(x)与g(x)均可导,且f(x)<g(x),a,b,x0都是实数,则( )。
admin
2022-03-23
28
问题
设在区间(-∞,+∞)内f(x)与g(x)均可导,且f(x)<g(x),a,b,x
0
都是实数,则( )。
选项
A、f’(x)<g’(x)
B、∫
0
a
f(x)dx<∫
a
b
g(x)dx
C、
D、以上没有一项是对的
答案
C
解析
f(x)=-e
-x
,g(x)=e
-x
,f(x)-g(x)=-2e
-x
<0,f(x)<g(x)
而f’(x)=e
-x
,g’(x)=-e
-x
,f’(x)-g’(x)=2e
-x
>0,f’(x)>g’(x)
A不成立。
B容易迷惑。事实上,B中未说a是否小于b,如果a>b,则由f(x)<g(x)恰恰得到∫
a
b
f(x)dx>∫
a
b
g(x)dx,所以B不成立。
由不等式f(x)<g(x)两边取极限,一般得到
似乎应有等号,但由于f(x),g(x)均连续,且题设对一切x,均有f(x)<g(x),于是由上式左右两边分别得到f(x
0
)与g(x
0
),得到的是f(x
0
)<g(x
0
),所以C正确。
转载请注明原文地址:https://jikaoti.com/ti/hXfRFFFM
0
考研数学三
相关试题推荐
在全概率公式中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设f(x)=u(x)+v(x),g(x)=u(x)-v(x),并设与都不存在,下列论断正确的是()
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)()
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
已知级数(1),则()
设两条抛物线y=nx2+和y=(n+1)x2+记它们交点的横坐标的绝对值为an.求:(1)这两条抛物线所围成的平面图形的面积Sn;(2)级数的和.
设(X,Y)的联合密度函数为(1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求fX|Y(x|y).
设f(x)=∫01-cosxsint2dt,g(x)=x5/5+x6/6,则当x→0时,f(x)是g(x)的().
随机试题
A.佝偻病B.水肿C.小头畸形D.脱水E.脑膜炎前囟凹陷常见于
成人术前常规禁食和禁水的时间是
在两种合同模式下,单机无负荷试车和联动无负荷试车分别由谁组织?采用平行发包模式,设备试车不合格的合同责任如何划分?假设5台设备试车是独立事件,分析每一事件的索赔关系。
2016年5月,“重庆火锅”当选为“重庆十大文化符号”之首。()
MygrandfatherJackis96yearsold,andhehashadaninterestinglife.HehastravelledalotinhislifeintheFarEast.He
太平洋战争
某产品由甲、乙两种混合而成,甲、乙两种物品所占比例分别为x和y,若甲物品的价格在60元的基础上上涨10%,乙物品的价格在40元的基础上下降10%时,该产品的成本不变,那么x,y分别等于()
Everyhumanbeinghasuniquearrangementofskinonhisfingersandthisarrangementisunchangeable.Scientistsandexpertshav
作业输入到磁盘等外存储器,由操作系统把作业放在特定的存储区域,等待运行称为(30)。
下列各项中哪一个不是虚拟页式存储管理中缺页中断处理所做的工作?
最新回复
(
0
)