首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率: (Ⅰ)“第二人抽到票”的概率p1; (Ⅱ)“第二人才抽到票”的概率p2; (Ⅲ)“第一人宣布抽到了票,第二人又抽到票”的概率p3
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率: (Ⅰ)“第二人抽到票”的概率p1; (Ⅱ)“第二人才抽到票”的概率p2; (Ⅲ)“第一人宣布抽到了票,第二人又抽到票”的概率p3
admin
2018-06-15
32
问题
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率:
(Ⅰ)“第二人抽到票”的概率p
1
;
(Ⅱ)“第二人才抽到票”的概率p
2
;
(Ⅲ)“第一人宣布抽到了票,第二人又抽到票”的概率p
3
;
(Ⅳ)“前两人中至少有一人抽到票”的概率p
4
.
选项
答案
设事件A
i
=“第i人抽到票”,i=1,2. (Ⅰ)如果是填空题,可以根据抽签公平性原理得知中签率应与抽签次序无关.直接填写p
1
=P(A
2
))=3/20;作为计算题,应写出解题步骤.根据全概率公式 p
1
=P(A
2
)=P(A
1
)P(A
2
|A
1
)+P([*])P(A
2
|[*]) [*] (Ⅱ)事件“第二人才抽到票”表示“第一人未抽到票、但第二人抽到了票”,根据乘法公式 [*] (Ⅲ)“第一人宣布抽到了票,第二人又抽到票”表示已知事件A
1
发生,再考虑事件A
2
出现. p
3
=P(A
2
|A
1
)=2/19. (Ⅳ)根据加法公式与乘法公式 p
4
=P(A
1
∪A
2
)=P(A
1
)+P(A
2
)-P(A
1
A
2
) =P(A
1
)+P(A
2
)-P(A
1
)P(A
2
|A
1
) [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/hS2RFFFM
0
考研数学一
相关试题推荐
设随机变量Xi~B(i,0.1),i=1,2,…,15,且X1,X2,…,X15相互独立,根据切比雪夫不等式,则P的值
设离散型二维随机变量(X,Y)的取值为(χi,yj)(i,j=1,2),且P{X=χ2}=,P{Y=y1|X=χ2}=,P{X=χ1|Y=y1}=,试求:(Ⅰ)二维随机变量(χ,Y)的联合概率分布;(Ⅱ)X与Y的相关系数ρXY;
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设总体X的分布列为截尾几何分布P{X=l}=θk-1(1-θ),k=1,2,…,r,P{X=r+1}=θr,从中抽得样本X1,X2,…,Xn,其中有m个取值为r+1,求θ的极大似然估计.
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设f(x)是周期为2的周期函数,它在区间(一1,1]上的定义为,则f(x)的傅里叶(Fourier)级数在x=1处收敛于___________.
设y=y(x)可导,y(0)=2,令△y=y(x+△x)一y(x),且△y=△x+α,其中α是当△x→0时的无穷小量,则y(x)=___________.
当x→0时,无穷小α=的阶数由高到底的次序为()
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
设曲线y=(ax3+bx2+cx+d经过(-2,44),x=-2为驻点,(1,一10)为拐点,则a,b,c,d分别为______.
随机试题
A.身黄B.目黄C.舌苔黄D.小便黄确定黄疸的主要依据是
患者女性,25岁,过去在小腿及足部有湿疹样病变,由于过度搔抓而出现红肿、糜烂、渗液等,原发病灶附近有多数散在的小丘疹,丘疱疹及水疱,皮损相互融合成片,对称分布,部分发展为有糠状鳞屑的椭圆形红斑,瘙痒剧烈。
《职业病防治法》实施后,国务院对国务院卫生行政部门和国务院负责安全生产监督管理的部门在职业病防治工作的职责作出了调整,其中安全监督管理部门的职责有()。
城市供电工程总体规划的主要内容包括()
按照选择权的性质划分,金融期权可以分为:()。
新中国进入社会主义初级阶段的标志是()
“挟泰山以超北海,语人曰吾不能,是诚不能也。为长者折枝,语人曰吾不能,是不为也,非不能也。”《孟子》中的这段话启示我们,做事情时要区分可能性和不可能性,二者的区别在于
5台主机A、B、C、D、E分属几个网段?哪些主机位于同一网段?若要加入第六台主机F,使它能与主机A属于同一网段,其IP地址范围是多少?
下列描述中,不符合良好程序设计风格要求的是()。
YaoMing,ourfavoritebasketball(play)_______,isbecomingasuperstarintheworld.
最新回复
(
0
)