首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
admin
2015-08-13
42
问题
案例:阅读下列三位教师有关“正弦定理”的教学片段。
教师甲的教学过程:
创设情境:
问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由以上数据,能测算出桥长AB吗?这是一个什么数学问题?
引出:解三角形——已知三角形的某些边和角,求其他的边和角的过程。
(设计意图:从实际问题出发,引入数学课题。)
师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?
生:……,“大角对大边,大边对大角”。
师:“a>b>c←→A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?
引出课题:“正弦定理”。
教师乙的教学过程:
师:请同学们想一想,我们以前遇到解三角形的一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。
师:如果一般三角形具有某种边角关系,那么对于特殊的三角形——直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间的关系。同学们可以参与小组共同研究。
(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。
(2)展示学生研究的结果。
师:请说出你研究的结论?
生:
师:你是怎样想出来的?
生:因为在直角三角形中,它们的比值都等于斜边c。
师:有没有其他的研究结论?(根据实际情况,引导学生分析判断结论正确与否,或留课后进一步深入研究。)
师:
对一般三角形是否成立呢?
众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。那么
对等边三角形是否成立呢?
生:成立。
师:对任意三角形
是否成立呢?现在让我们借助于《几何画板》做一个数学实验,……
师:借助于电脑与多媒体,利用《几何画板》软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。
结论:
对于任意三角形都成立。
教师丙的教学过程:
师:对任意的三角形,如何用数学的思想方法证明
呢?之前的探索对我们有没有帮助?学生分组讨论,每组派一个代表总结。(以下的证明过程,根据学生回答情况进行叙述)
生:思考得出
①在Rt△ABC中成立,如前面检验。
②在锐角三角形中,如图1设BC=a,CA=b,AB=c
作:AD⊥BC,垂足为D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在Rt△ADC中,
∴AD=AC·sinC=b·sinC
∴csinB=bsinC
∴
同理,在△ABC中,
∴
③在钝角三角形中,如图2设∠C为钝角,BC=a,CA=b,AB=c
作AD⊥BC交BC的延长线于D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在RT△ADC中,
∴AD=AC·sin∠ACD=b·sin∠ACB
∴c·sinB=b·sin∠ACB
∴
同锐角三角形证明可知
师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
问题:
(1)分析三种教学过程的特点。
(2)说明正弦定理的教学过程中应该注意的问题。
选项
答案
(1)教师甲:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。 教师乙:教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论作准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。引导学生的思维逐步形成“情境思考”一“提出问题”一“研究特例”一“归纳猜想”一“实验探究”一“理论探究”一“解决问题”的思维方式,进而形成解决问题的能力。 教师丙:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。 (2)“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。解三角形作为几何度量问题,应突出几何的作用和数量化的思想,为学生进一步学习数学奠定基础。“正弦定理”作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),解决简单的三角形度量问题。教学过程中,应发挥学生的主动性,通过探索发现、合情推理与演绎证明的过程,提高学生的思辨能力。
解析
转载请注明原文地址:https://jikaoti.com/ti/hHz9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
“天时不如地利,地利不如人和”说明()。
下列对公民直接参与民主决策的意义理解正确的是()。①有利于把人民利益作为决策的出发点②有利于充分发扬民主,反映民意③有利于促进公民对决策的理解和贯彻执行④有助于促进决策的科学化、合理化
在自然界,没有上,就无所谓下;在社会中,没有先进,就无所谓落后;在认识中,没有正确,就无所谓错误。这说明()。
李某用手机发布恐吓信息,导致机场航班延迟起飞,给国家、他人带来严重损失,最终李某受到法律制裁。这一案例说明公民在行使自由和权利时()。①可以随心所欲,不受约束②应在法律规定和允许的范围内行使③不得损害国家、社会和其他公民的合法权益
“石头、剪刀、布”是人们喜闻乐见的一种游戏。它起源于中国,然后传到日本、韩国等地。随着亚欧贸易的不断发展又传到了欧洲,到了近现代逐渐风靡全世界。这体现了()。
元代忽思慧在《饮膳正要》说:“春气温,宜食麦,以凉之;夏气热,宜食菽,以寒之;秋气燥,宜食麻,以润之;冬气寒,宜食黍,以热性治其寒”。从辩证法角度看,古人这一饮食观是在强调()。①要善于把握事物存在和发展的不同条件②从实际出发,正确把握饮食和季节关
经过30多年的不懈努力,深圳迅速从一个边陲小镇发展成为一个现代化大城市,综合经济实力跃居全国大中城市前列。这充分证明了()。
材料:国家法律法规对行政裁量权规定了一定的范围和幅度。但有的缺乏具体的实施细则和执法基准,这为行政机关滥用行政裁量权提供了可能。比如,道路交通法第99条规定,机动车行驶超速的罚款从200元到2000元,执法人员应根据案件实际情况合理作出处罚。而在实践中,出
转基因食品曾引起激烈的争辩。支持者认为它可以为人类提供更丰富的食品,但也有一些人对此表示反对,认为这改变了大自然本身的法则。从中可见()。
初中“正数和负数”(第一节课)设定的教学目标如下:①通过丰富实例,进一步体会负数的意义;②理解相反意义的量,体会数的扩充过程;③用负数表示现实情境中的量,体会数学应用的广泛性.完成下列任务:作为初中阶段的起始课,其难点是
随机试题
甲市仲裁委员会就A公司与B公司合同纠纷一案作出裁定,裁定A公司返还B公司三合板材1000张。A公司拒绝履行裁决。于是B公司先后向A公司住所地甲市乙区和A公司三合板仓库所在地的甲市丙区法院申请执行。本案应由哪一个地方的法院执行?()
某企业因计算错误,未缴税款累计达50万元。关于该税款的征收,下列哪些选项是正确的?(2014年卷一70题,多选)
根据最高人民法院的有关规定,实际施工人以发包人为被告主张权利的,()。
银行在收取承担费时,不可以进行的行为是()。
中央银行存款准备金政策的调控作用主要表现在()。
案例: 2006年7月10日,甲与乙订立买卖合同,以500万元的价格向乙购买一套精装修住房。当日,甲支付了40万元定金,乙将房屋交付给甲。双方约定:甲应于8月1日之前付清余款;乙应在收到余款后3日内办理房屋过户手续。7月15日,当地突降特大暴雨,该房屋被
中国特色社会主义理论体系的形成和发展经历了四个阶段,十五大到十六大属于其哪一阶段?()
暖气对于()相当于()对于黑暗
在考生文件夹下,打开文档WORD2.DOCX,按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。设置表格列宽为2.2厘米、行高0.5厘米;按主关键字“规格10”列升序、次关键字“规格2.5”列升序排序表格内容。
A、Itisstrained.B、Itiscomplex.C、Itisintimate.D、Itissignificant.A新闻开头提到,以色列媒体称其驻美大使MichelOren告诉以色列外交官员说美以关系正面临历史性的危机(
最新回复
(
0
)