首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
admin
2016-01-11
19
问题
已知二次型f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
选项
答案
矩阵A的特征多项式为[*] 由此得矩阵A的特征值为λ
1
=1,λ
2
=6,λ
3
=一6.于是,二次型f可通过正交变换x=Oy化为标准形f=y
1
2
+6y
2
2
—6y
3
2
. 对于特征值λ
1
=1,由于[*] 故对应于特征值λ
1
=1的特征向量可取为ξ
1
=(2,0,一1)
T
. 类似地,对应于特征值λ
1
=6,λ
2
=-6的特征向量可分别取为 ξ
2
=(1,5,2)
T
,ξ
3
=(1,一1,2)
T
. 因为A是实对称矩阵,且λ
1
,λ
2
,λ
3
互异,故x
1
,x
2
,x
3
构成正交向量组,将其单位化得[*] 故对二次型f作正交变换[*] 则可将f化为标准形f=y
1
2
+6y
2
2
一6y
3
2
.
解析
本题主要考查用正交变换化二次型为标准形的方法,矩阵特征值、特征向量的求法.先求出二次型f的矩阵A及A的特征值与特征向量,再将特征向量正交单位化,求出正交矩阵,即可把f化为标准形.
转载请注明原文地址:https://jikaoti.com/ti/h9DRFFFM
0
考研数学二
相关试题推荐
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵。
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设平面区域D:1<x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
设f(x)是区间上的正值连续函数,且若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
随机试题
世界银行贷款项目货物、工程采购和招标的主要方式中,竞争力最强的是()。
粒料基层的施工中,未筛分碎石的含水量较最佳含水量宜大于( )左右。
Nowadaysmanydocumentsareusedininternationalcargotransportation,someofthedocumentscanbetransferredtothethirdpar
我国政府已经部分加入了《ATA公约》和《货物暂准进口公约》,目前ATA单证册在我国仅适用于部分货物,按照现行的规定,下列不属于ATA单证册适用范围的货物是( )。
()是指金融衍生工具的价值与基础产品或基础变量紧密联系、规则变动。
下面是“民主监督:守望公共家园”一课的板书设计。(1)宪法赋予公民的监督权利:批评权、建议权、申诉权、控告权、检举权。(2)公民进行民主监督的主要渠道:信访举报制度、人大代表联系群众制度、舆论监督、监督听证会、民主评议会、网上评议政府等形式。请对材料
简述教学反思的特点。
在集贸市场上买东西,讨价还价是普遍的现象。商品的卖者总是抬高卖价,买者总是压低买价,而商品最后的成交价格,则往往是买卖双方协商的结果。这种现象表明市场价格的形成()。
标志毛泽东思想走向成熟的是()
MikeandhismotheraregoingtotheWaiterDisney.Atfirst,Mikethinksskatingmustbeveryeasyandinteresting.
最新回复
(
0
)