首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x21+(1-a)x22+2x23+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知二次型f(x1,x2,x3)=(1-a)x21+(1-a)x22+2x23+2(1+a)x1x2的秩为2. 求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
admin
2021-11-09
36
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
2
1
+(1-a)x
2
2
+2x
2
3
+2(1+a)x
1
x
2
的秩为2.
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
选项
答案
当a=0时, [*] 可知A的特征值为λ
1
=λ
2
=2,λ
3
=0. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得A的属于λ
1
=λ
2
=2的线性无关的特征向量为 ξ
1
=(1,1,0)
T
,ξ
2
=(0,0,1)
T
. 对于λ
3
=0,解齐次线性方程组(-A)x=0,得A的属于λ
3
=0的线性无关的特征向量为 ξ
3
=(-1,1,0)
T
. 易见ξ
1
,ξ
2
,ξ
3
两两正交,只需单位化,得 [*] 于是 [*] 则Q为正交矩阵.在正交变换x=Qy下,二次型的标准形为 f=2y
2
1
+2y
2
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/h4lRFFFM
0
考研数学二
相关试题推荐
求.
设0﹤a﹤b,证明:.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0,证明:.
若由曲线,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是()。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设二次型f(x1,x2,x3)=XTAX=x12+5x22+x32-4x1x2+2x2x3,则对任意X≠0,均有()
下列说法正确的是().
下列说法正确的是().
设3阶矩阵A与B相似,且|3E+2A|=0,|3E+B|=|E—2B|=0,则行列式|A|的代数余子式A11+A22+A33=________。
随机试题
Withaproperunitnoun:Iwenttobuya_______ofChinaDaily.
尿中红细胞平均体积MCV>72±1,且呈小细胞分布,说明血尿多来源于
张某因抢劫罪被某区人民法院判处有期徒刑8年。宣判后张某不服,以自己有法定从轻情节、原审法院量刑过重为由提起上诉。市中级人民法院对此案进行了二审。请问:(1)中级人民法院在审理该上诉案件时,合议庭应当如何组成?(2)中级人民法院审理该案的
建设工程项目总进度目标论证的工作包括:①进度计划系统的结构分析;②项目的工作编码;③编制各层进度计划。它们的正确次序是()。
以下不属于固定资产贷款的是()。
于老师决定在班上组织一次全员参与的特长展示活动,学生们陆续在报名表上写上自己的“拿手好戏”:手工、书法、弹琴、乒乓球……于老师发现,除了小伟,其他学生都报了项目。小伟刚从外地转来,学习成绩很差,很少参加集体活动,在班上也没有什么朋友。于老师把小伟
有多少种方法可以把100表示为(有顺序的)3个自然数之和?
试述CSMA/CD介质访问控制技术的工作原理。
WhatdoesSmithsayaboutcoffee?
Coincidingwithhisrichlifeexperiences,Chaucer’sliterarycareersometimescanbeneatlydividedintothreeperiods.Firstl
最新回复
(
0
)