首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f’(x0)g’ (x0)
设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f’(x0)g’ (x0)
admin
2015-05-07
27
问题
设f(x),g(x)在点x=x
0
处可导且f(x
0
)=g(x
0
)=0,f’(x
0
)g’ (x
0
)<0,则
选项
A、μ不是f(x)g(x)的驻点.
B、x
0
是f(x)g(x)的驻点,但不是f(x)g(x)的极值点.
C、x
0
是f(x)g(x)的驻点,且是f(x)g(x)的极小值点.
D、x
0
是f(x)g(x)的驻点,且是f(x)g(x)的极大值点.
答案
D
解析
由于
=f’(x
0
)g(x
0
)+f(x
0
)g’(x
0
)=0,因此x=x
0
是f(x)g(x)的驻点,进一步考察是否是它的极值点.
由条件f’(x
0
)g’(x
0
)<0
(x
0
)<0,g’(x
0
)>0(或f’(x
0
)>0,g’(x
0
)<0).由
及极限的保号性质
δ>0,当x∈(x
0
-δ,x
0
+δ),x≠x
0
时
x∈(x
0
,x
0
+δ)时
f(x)<0(>0), g(x)>0(<0);
x∈(x
0
-δ,x
0
)时
f(x)>0(<0), g(x)<0(>0)
x∈(x
0
-δ,x
0
+δ),x≠x
0
时
f(x)g(x)<0=f(x
0
)g(x
0
)
x=x
0
是f(x)g(x)的极大值点.因此选(D)
转载请注明原文地址:https://jikaoti.com/ti/gpcRFFFM
0
考研数学一
相关试题推荐
齐次线性方程组的系数矩阵为A,若存在3阶矩阵B≠O,使得AB=O,则().
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.A能否相似于对角矩阵,说明理由.
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明:
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明:
设求解矩阵方程AX=B.
已知曲线y=y(x)经过点(1,e—1),且在点(x,y)处的切线在y轴上的截距为xy,求该曲线方程的表达式.
设f(x)在区间[0,+∞)上具有连续的一阶导数,且满足f(0)=1及求导函数f’(x);
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,Y1)及(X2,Y2)的分布.
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
随机试题
Accordingtothereport,whatistheweatherliketonight?
甲状腺手术时不慎将甲状旁腺切除后会出现
下列关于汉文帝废除肉刑的说法正确的是:()
Ifit________forhisbadcold,Rickwouldhaveenjoyedmoreonhisbirthdayparty.
Wehadbetterwaitforanothertwohours.(改为否定句)Wehad______waitforanothertwohours.
2015年1月6日,日本外交学者网站刊登了一篇标题为“习近平主席的力量来自哪里”的文章,对习近平主席的治国之道作出评价。该文章认为习近平主席自执政以来一直反复强调“梦想”,并将治国理念与认可中国百姓的理想、追求和梦想相结合,将“个人梦想”融入整体“中国梦”
恩格斯指出:历史发展“总是从许多单个的意志的相互冲突中产生出来的”,“无数互相交错的力量……产生出一个总的结果,即历史事变,这个结果又可以看作一个作为整体的、不自觉地和不自主地起着作用的力量的产物。所以以往的历史总是像一种自然过程一样地进行。”这说明(
(07年)设随机变N(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fXY(x|y)为
阅读以下关于网页制作和网页编程的说明,回答问题1至问题4。*
A、Growfruitswithbettertaste.B、Connectbreederswithchef.C、Improvethegenesoffruits.D、Makefruits’storagetimelonger
最新回复
(
0
)