首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组α1x1+α2x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明
设线性方程组α1x1+α2x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明
admin
2020-06-11
21
问题
设线性方程组α
1
x
1
+α
2
x
2
+α
3
x
3
+α
4
x
4
=β,其中α
i
(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
。
(Ⅰ)问β能否由α
2
,α
3
,α
4
线性表出,若能表出,则写出表出式;若不能表出,请证明之;
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由;
(Ⅲ)求线性方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β的通解。
选项
答案
(Ⅰ)由已知条件可知β可由α
i
(i=1,2,3,4)线性表出,且 β=(4—2k)α
1
+(3k一1)α
2
+kα
3
+3α
4
, 其中k为任意常数。 当k=2时,则可得到β=5α
2
+2α
3
+3α
4
。因此β能由α
2
,α
3
,α
4
线性表出。 (Ⅱ)方程组的通解为k(一2,3,1,0)
T
+(4,一1,0,3)
T
,则系数矩阵的秩和增广矩阵的秩均为3,且一2α
1
+3α
2
+α
3
=0,得 α
3
=2α
1
一3α
2
。 (*) 假设α
4
能由α
1
,α
2
,α
3
线性表出,则存在不全为零的数k
1
,k
2
,k
3
使 α
4
=k
1
α
1
+k
2
α
1
+k
3
α
3
, 将(*)式代入可得 α
4
=k
1
α
1
+k
2
α
1
+k
3
α
3
=(k
1
+2k
3
)α
1
+(k
2
—3k
3
)α
2
, 因此可知r(α
1
,α
2
,α
3
,α
4
)≤2,该结果与r(α
1
,α
2
,α
3
,α
4
)=3矛盾,因此α
4
不能由α
1
,α
2
,α
3
线性表出。 (Ⅲ)因为方程组(α
1
,α
2
,α
3
,α
4
)x=β有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
,因此可知 r(α
1
+β,α
1
,α
2
,α
3
,α
4
)=r(α
1
+β,α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3, 故方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β有解,由 0.(α
1
+β)+4α
1
一α
2
+0.α
3
+3α
4
=β,得η
1
=(0,4,一1,0,3)
T
; 0.(α
1
+β)一2α
1
+3α
2
+α
3
+0.α
4
=0,得ξ=(0,一2,3,1,0)
T
; (α
1
+β)一α
1
+0.α
2
+0.α
3
+0.α
4
=β,得η
2
=(1,一1,0,0,0)
T
, 得所求方程组的通解为 k
1
ξ+k
2
(η
1
一η
2
)+η
1
=k
1
[*]。 其中ξ与η
1
一η
2
不成比例,是线性无关的。
解析
转载请注明原文地址:https://jikaoti.com/ti/ggARFFFM
0
考研数学二
相关试题推荐
设A和B都是可相似对角化的n阶矩阵,证明A和B相似A和B的特征值完全相同.
设A,B满足A*BA=2BA一8E,其中A=,求矩阵B。
一链条悬挂在一钉子上,启动时一端离开钉子8m,另一端离开钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:(1)不计钉子对链条的摩擦力;(2)若摩擦力为常力且其大小等于2m长的链条所受到的重力.
求cosχ的带皮亚诺余项的三阶麦克劳林公式.
由当χ→0时,1-cosaχ~[*]χ2得[*]因为sinaχ=aχ-[*]χ3+o(χ3),asinχ=a[χ-[*]+o(χ3)]=aχ-[*]χ3+o(χ3)[*]
设φ(x)是以2π为周期的连续函数,且Φ’(x)=φ(x),Φ(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令其中选常数C0,使得F(x)在x=c处连续.就下列情形回答F(x)是否是f(x)在(a,b)的原
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,求方程组所有的解。
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an)的极限存在.
随机试题
班级管理的主要对象是()
下列属于良性肿瘤的是()(2006年)
患者,男,33岁,尿频,尿急伴发热月余。尿常规检查:镜下血尿,脓尿。CT检查见图。该患者最有可能患何种疾病
下列关于蜂窝织炎的描述。错误的是
税率是指应纳税额与征税对象之间的比例,是计算应纳税额的尺度,它体现征税的广度。()
2017年8月,公司负责存货明细账登记的会计张某因公外派,财务经理指定由出纳兼任张某的工作,并办理了交接手续。关于这一做法是否符合规定的下列表述中,正确的有()。
某单位职工张某已经怀孕8个月,下列说法正确的有()。
在生源危机已成常态的语境下,思考如何保障分流教师权益的命题,亦是_______的事。对于年轻有才的教师来说,下岗的可能性比较小,而奉献完了青春的中老年教师,一旦被课堂所抛弃,在就业压力_______的今天,还有多少“重头再来”的舞台等着他们呢?依次填入画横
五四以前的新文化运动是以民主和科学为基本口号的。对这一口号的正确理解是
AVerySpecialDogA)Itis8:15a.m.AflightlandsatMelbourne’sTullamarineInternationalAirport.Severalhundredpiecesof
最新回复
(
0
)