首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明: (Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明: (Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
admin
2017-11-30
43
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:
(Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ);
(Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
选项
答案
(Ⅰ)令φ(x)=e
-2x
f(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0,根据罗尔定理,存在一点ξ∈(a,b),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f’(x)-2f(x)]且e
-2x
≠0,所以f’(ξ)=2f(ξ)。 (Ⅱ)令h(x)=f(x)e
3g(x)
,因为f(a)=f(b)=0,所以h(a)=h(b)=0,根据罗尔定理,存在一点η∈(a,b),使得h’(η)=0,而h’(x)=e
3g(x)
[f’(x)+3f(x)g’(x)]且e
3g(x)
≠0,所以f’(η)=-3f(η)g’(η)。
解析
转载请注明原文地址:https://jikaoti.com/ti/gHKRFFFM
0
考研数学三
相关试题推荐
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设=A,证明:数列{an}有界.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1—2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1一t)x2)≤tf(x1)+(1一t)f(x2).证明:
证明:,其中a>0为常数.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
随机试题
简述人的个性倾向性。
A、4000.B、5000.C、1300D、3100B大陆来旅客总数占总数的1/3。
男,22岁,因游泳后双眼出现畏光、流泪和大量水样分泌物l天就诊;检查可见双眼结膜高度充血、结膜下可见小出血点,角膜上皮点状浸润。最可能的诊断是
结合犯罪构成理论以及刑法分则的相关规定分析,下列说法正确的是?()
重级工作制吊车梁疲劳计算采用容许应力幅法时,下列( )部位可不计算疲劳。
“巴扎”是()的传统贸易集市,民族风情浓郁。
设计任务:请阅读下面学生信息和语言素材,设计20分钟的英语阅读教学方案。教案没有固定格式,但须包含下列要点:-teachingobjectives-teachingcontents-keyanddifficultpoint
(06年)微分方程的通解是_______.
在关系数据模型中,每一个关系都是一个()。
AuniquelaboratoryattheUniversityofChicagoisbusyonlyatnight.Itisadreamlaboratorywhereresearchersareatworks
最新回复
(
0
)