首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(Ⅰ)解都满足方程χ1+χ2+χ3=0,求a和方程组的通解.
已知齐次方程组(Ⅰ)解都满足方程χ1+χ2+χ3=0,求a和方程组的通解.
admin
2018-11-23
51
问题
已知齐次方程组(Ⅰ)
解都满足方程χ
1
+χ
2
+χ
3
=0,求a和方程组的通解.
选项
答案
求出(Ⅰ)的解,代入χ
1
+χ
2
+χ
3
=0,决定a.用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(Ⅰ)和方程χ
1
+χ
2
+χ
4
=0同解,以χ
2
,χ
3
,χ
4
为自由未知量求出一个基础解系 η
1
=(-1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(-1,0,0,1)
T
. 其中η
2
,η
3
都不是χ
1
+χ
2
+χ
3
=0的解,因此a=0不合要求. 当a≠0时.继续对B进行初等行变换 [*] 以χ
4
为自由未知量,得基础解系η=(a-1,-a,[*],1)
T
.代入χ
1
+χ
2
+χ
3
=0, (a-1)+(-a)+[*]=0, 求得a=1/2.即当a=1/2时,χ
1
+χ
2
+χ
3
=0,从而(Ⅰ)的解都满足χ
1
+χ
2
+χ
3
=0.当a≠1/2时,η不满足χ
1
+χ
2
+χ
3
=0. 得a=1/2为所求.此时,方程组的通解为c(-1/2,-1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/gH1RFFFM
0
考研数学一
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=____________.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3;Aα3=2α2+3α3.(1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;(2)求A的特征值;(3)求一个可逆矩阵P,使得P
设α1,…,αn-1,β1,β2均为n维实向量,α1,…,αn-1线性无关,且βj(j=1,2)与α1.….αn-1均正交.证明:β1与β2线性相关.
对二事件A、B。已知P(A)=0.6,P(B)=0.7,那么P(AB)可能取到的最大值是______.P(AB)可能取到的最小值是_______.
一批矿砂的4个样品中镍含量测定为(%):3.25,3.26,3.24,3.25.设测定值总体服从正态分布,问在α=0.01下能否接受假设:这批矿砂镍含量的均值为3.26.(t0.99(3)=5.8409,下侧分位数).
(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是
(09年)设有两个数列{an},{bn},若,则
A=,其中ai≠0(i=1,2,…,m),bj≠0(j=1,2,…,n),则线性方程组AX=0的基础解系含有解向量的个数是________.
随机试题
填料塔在塔内设置填料,能够达到使气液两相良好传质所需的接触面积。
快捷方式的扩展名是_______。
A.内皮细胞损伤B.红细胞损伤C.淋巴细胞损伤D.网状内皮细胞受损E.上皮细胞屏障功能受损肺低灌注和缺氧可使肺毛细血管的()
对绿脓杆菌作用强四环素类抗生素中的首选药
关于建筑色彩的表述中,错误的是()
在国际上,项目经理的地位作用和特征是( )。
企业安全生产的最基本要求和前提条件是()。
根据规定,失票人可以向其申请公示催告的法院是()。
()年,我国开始逐步推行城镇住房制度改革,开始实行向居民售房的试点。
Haveyoueverdreamedofowningyourowncar7Imaginedrivingdownatree-linedstreetwiththewindowsdownonasunnyday,aw
最新回复
(
0
)