设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(Ⅰ)的一个基础解系; (2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零

admin2019-04-22  29

问题 设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T
    (1)求方程组(Ⅰ)的一个基础解系;
    (2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零公共解?

选项

答案(1)A=[*] 方程组(Ⅰ)的基础解系为ξ1=[*] (2)(Ⅱ)的通解为 [*] 代日(Ⅰ)得 [*] 因为两个方程组有公共的非零解,所以l1,l2不全为零, 从而[*]=0,解得a=-1或a=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/edLRFFFM
0

最新回复(0)