首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
admin
2019-06-04
24
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( ).
选项
A、α
1
+α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
—2α
3
,α
1
+α
2
一α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
一α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
C
解析
因为
(α
1
+α
2
)一(α
2
一α
3
)一(α
3
一α
4
)一(α
4
+α
1
)=0,
所以向量组(A)线性相关.
若令
β
1
=α
1
+α
2
,β
2
=α
1
—2α
3
,β
3
=α
1
+α
2
—α
3
,β
i
=5α
2
+α
3
.
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示,因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关.
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关.若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选.因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关.
转载请注明原文地址:https://jikaoti.com/ti/e6QRFFFM
0
考研数学一
相关试题推荐
设χ1,χ2,…,χn为来自总体N(μ,σ2)的简单随机样本,样本均值=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为________.
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差.若+kS2为np2的无偏估计量,则k=_______.
设二维随机变量(X,Y)的概率密度为求随机变量Z=X+2Y的分布函数.
设口为实n维非零列向量,αT表示α的转置.(1)证明:A—E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β—(bc)α,其中,b、c为实常数.
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.证明向量β1,β2,β3为R3的一个基;
若向量组α1=(1,1,2,一2),α2=(1,3,一x,一2x),α3=(1,一1,6,0)的秩为2,则x=_________.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.求a的值;
随机试题
患者腹大胀满,按之如囊裹水,下肢浮肿,脘腹痞胀,得热稍舒,怯寒神倦,溲少便溏,舌苔白腻,脉缓。治疗宜用何方
对淋巴细胞和巨噬细胞功能具有抑制作用的细胞因子是
较适合采用牛角钳拔除的患牙是
建设工程项目人力资源管理的目的是( )。
()组织结构在组织结构模式中是一种较新型的组织结构。
一个汉字的内码长度为2字节,其每个字节的最高二进制位的值分别为()。
A、正确B、错误B
Thefactoryhadtolay______onethirdofitsworkersbecausethedemandforitsproductsdecreasedinthemarket.
Aknowledgeofdifferencesbetweenculturesinanever-shrinkingglobalizedworldarebecomingoneoftheessentialskillsthat
A、He’llgivethequizatalatertime.B、Thequizwillbeveryshort.C、Thequizwon’tbereadyuntilThursday.D、He’llscoreth
最新回复
(
0
)