首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
鸟类需要大量摄入食物以获得保持其体温的能量,有些鸟类将它们大多数的时间都用在摄食上。但是,一项对食种子的鸟类和食蜜的鸟类的比较研究表明:相同的能量需要肯定会使食种子的鸟类比食蜜的鸟类在摄食上花费更多的时间,因为相同量的蜜所含的能量大于种子所含的能量。以下哪
鸟类需要大量摄入食物以获得保持其体温的能量,有些鸟类将它们大多数的时间都用在摄食上。但是,一项对食种子的鸟类和食蜜的鸟类的比较研究表明:相同的能量需要肯定会使食种子的鸟类比食蜜的鸟类在摄食上花费更多的时间,因为相同量的蜜所含的能量大于种子所含的能量。以下哪
admin
2009-05-23
31
问题
鸟类需要大量摄入食物以获得保持其体温的能量,有些鸟类将它们大多数的时间都用在摄食上。但是,一项对食种子的鸟类和食蜜的鸟类的比较研究表明:相同的能量需要肯定会使食种子的鸟类比食蜜的鸟类在摄食上花费更多的时间,因为相同量的蜜所含的能量大于种子所含的能量。以下哪项是上述论证所依赖的假设?
选项
A、不同种类的鸟对能量的需要通常是不一样的。
B、食蜜的鸟类并不会有时也吃种子。
C、食蜜的鸟类吃一定量的蜜所需要的时间不长于食种子的鸟类吃同样量的种子所需要的时间。
D、食蜜的鸟类的体温不低于食种子的鸟类的体温。
E、一种鸟类生存所需要的总能量与其身体的大小、筑巢的习惯和栖息地气候等因素无关。
答案
C
解析
进食的时间效率必须进行比较,否则不能得出进食量的区别。
转载请注明原文地址:https://jikaoti.com/ti/dCeUFFFM
本试题收录于:
MBA联考(综合能力)题库专业硕士分类
0
MBA联考(综合能力)
专业硕士
相关试题推荐
现代教育是以_______为基础,以现代社会生活和科学技术为教育内容,以现代技术为教育手段。
对“韩愈在《进学解》里发挥这个意思”一句中“这个意思”的理解正确的一项是:对下面句子在语段中的作用所作的分析,正确的一项是:其实这种“气”与“趣”,不只在自然中可以见出,在一般人生世相中也可得到。
中国近代史上确立“民商合一”的民法典编纂体例的政权是______。
要说清楚纳米科技的真正涵义不是一件易事。“纳米”只是一个长度单位,大约是10个氢原子排列起来的长度。纳米科技被广泛地定义为纳米尺度空间(如从一纳米至几百纳米)的科学技术。当科学家和工程技术人员力图在用纳米尺度来理解和控制物质的时候,就会发现许多新的现象,发
阅读下面一段说明文,完成下列5题。什么是星云?过去人们往往把天空中一切云雾状的天体都说成是星云。其实,离我们非常遥远的位于银河系以外的云雾状天体,并不是星云,而是与银河系类似的庞大的恒星系统。根据它们的外貌,人们有时也称其为河外星云,即银河系以外的星云。
决策咨询系统中,参与最多、同时也是行政决策中心环节的是()
如图1—3—2所示,当x∈(a,b)时,有f’(x)≥0,f"(x)<0,则f(x)的图形只可能是().
与曲线y=x3+x2一1相切且与直线6x一2y一1=0垂直的直线方程是_______.
设曲线在[a,b]上连续,且f(x)>0,又F(x)=∫axf(t)dt+,问方程F(x)=0在(a,b)内有_______个实根.
蕨类——一种毒草——正在蔓延到北半球的很多牧场。一个可能是费用低廉而又能自我维持的应对办法是引进这种植物的天敌。因此,许多科学家建议把产于南半球的一种食蕨类飞蛾放到北半球受蕨类破坏的地区。如果科学家建议控制蕨类的办法被接受,以下哪项是成功的前提?
随机试题
患者,男,60岁。因颈椎病入院手术治疗。术前锻炼的项目不包括
下列关于恶病质的描述不正确的是
已知α=i+αj-3k,β=αi-3j+6k,γ=-2i+2j+6k,若α,β,γ共面,则α等于()。
两直角刚)AC、AC、CB支承如图4-5所示,在铰C处受力F作用,则A、B两处约束力的作用线与x轴正向所成的夹角分别为()。
杜邦分析系统主要反映的财务比率关系有()。
资料一:甲公司为一个大型国有企业,主营业务为原油贸易,公司资金雄厚,在银行的信用等级较高,银行给该公司提供的贷款额度较多;甲公司拥有一流的营销和管理团队;甲公司拥有国内最强的石油仓储能力;甲公司缺乏石油开采和炼化方面的技术专家;原油贸易环节的利润率逐年下降
人的发展的互补性要求教育应该做到()。
读人类文明进程及社会经济增长主导因素变化示意图,完成下列问题。图中a、b、c、d曲线对应的因素正确的是()。
阅读下面的文章,回答问题。“侯世达”是DougIasHofstadter的中文名,这个1997年由他的中文出版商所定的名字,如今已是他在中文世界里的通称,这个名字也确实比他的父亲、1961年诺贝尔物理学奖得主、物理学家罗伯特.霍夫施塔特(Rob
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
最新回复
(
0
)