首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2016-10-20
39
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率.注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数P的0-1分布,因此它们的和Y
2
+Y
2
+Y
3
[*]Y服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, (q[*]-P) P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/d1xRFFFM
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
计算空间曲积分为螺线x=cosθ,y=sinθ,z=θ,由A(1,0,0)到B(1,0,2π)的一段.
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
随机试题
In1993,NewYorkStateorderedstorestochargeadepositonbeverage(饮料)containers.Withinayear,consumershadreturnedmi
孕妇从妊娠中期开始,每日增加蛋白质
在城市道路上,一条人行带的最大通行能力为()人/小时。
下列关于套利定价理论的说法正确的是( )。
甲股份有限公司(下称“甲公司”)为增值税一般纳税人,增值税税率为17%(凡资料中涉及的其它企业,需缴纳增值税的,皆为17%的税率),所得税税率为25%。2007年发生如下经济业务:(1)2月5日甲公司以闲置的一块土地从丙公司置换急需的一批原材料。已知土地
游客不得在交运行李或随身携带物品内夹带的物品有()。
给付之诉是指对被告享有给付请求权的原告要求人民法院判令被告向自己履行一定给付义务的民事诉讼请求。确认之诉是指原告要求法院确认其所主张的法律关系存在或不存在的民事诉讼请求。确认之诉与给付之诉的区别在于:当事人只要求人民法院确认当事人之间发生争议法律关系的存在
党的十九大报告指出,综合分析国际国内形势和我国发展条件,从二〇二〇年到21世纪中叶可以分两个阶段来安排。第一个阶段,从二〇二〇年到二〇三五年;第二个阶段,从二〇三五年到21世纪中叶,在基本实现现代化的基础上,再奋斗十五年,()
Peopleare,onthewhole,pooratconsideringbackgroundinformationwhenmakingindividualdecisions.Atfirstglancethismigh
Asaconductor,LeonardBernsteinisfamousforhisintenselyvigorousandexuberantstyle.
最新回复
(
0
)