首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2019-06-25
42
问题
已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
①设[*]则条件Aα=2α即 [*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2. 此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4. 再求单位正交特征向量组 属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,一1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化: [*] 属于一4的特征向量是(A+4E)x=0的非零解. 求出β
3
=(1,一1,一1)
T
是一个解,单位化: [*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,一4. 作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
—4y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/cynRFFFM
0
考研数学三
相关试题推荐
设在x>0处,f(x)连续且严格单调增,并设F(x)=∫0x(2t—x)f(t)dt,则F(x)在x>0时()
设z=z(x,y)是由方程z+lnz—∫yxdt=1确定的函数,计算。
设微分方程x2y’+2xy=2(ex一1).(Ⅰ)求上述微分方程的通解;(Ⅱ)求使y(x)存在的那个解及此极限值.
已知非齐次线性方程组A3×4x=b有通解k1(1,2,0,一2)T+k2(4,一1,一1,一1)T+(1,0,一1,1)T,其中k1,k2是任意常数,则满足条件x1=x2,x3=x4的解是()
设A=,且已知A相似于B,则b=___________.
设z=f(u)存在二阶连续导数,并设复合函数z=f()在x>0处满足求f’(u)及f(u)的一般表达式.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().(B)nS2~χ2(n)
设y"一3y′+ay=一5e-x的特解形式为Axe-x,则其通解为___________.
设A为n阶实对称可逆矩阵,二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
随机试题
不属于濒死阶段的表现是
有关药敏操作正确的是
釉柱晶状体的形态为
神经、肌肉、腺体感受阈刺激产生反应的共有表现是
在Access中,打开“校本课程”数据库中的学生表与教师表,已知教师表中设置的主键为课程号,如果查询每位学生所学的课程名称,可以使用命令()。
请认真阅读下列材料,并按要求作答。如果指导高年级小学生学习,试拟定教学目标。
以人均收入衡量的发展差距,本身隐含着一个资源禀赋结构上的差异,即发达地区具有相对丰富的资本要素,从而在资本密集型产业上具有比较优势;而相对不发达地区则具有劳动力丰富和生产成本低的比较优势。东中西部地区之间存在的资源禀赋结构差异,无疑可以成为中西部地区经济发
A、 B、 C、 D、 C
在数据库动态转储机制中,一般需要使用【12】文件才能将数据库恢复到某一时刻的正确状态。
Whyisthefilm-makersentencedtosixyearsinjail?
最新回复
(
0
)