设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+=0,求∫[f’’(x)-f’(x)]e-xdx.

admin2017-05-31  34

问题 设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+=0,求∫[f’’(x)-f’(x)]e-xdx.

选项

答案由题设知,f’(x)—f(x)+[*]∫0xf(t)dt=0,并且f’(0)=f(0)=1.于是,有(1+x)f’(z)一(1+x)f(z)+∫0xf(t)dt=0. 两边对x求导得 f’(x)_+(1+x)f’’(x)一f(x)一(1+x)f’(x)+f(x)=0. 即(1+x)f’’(x)一xf’(x)=0. 令f’(x)=p,则有(1+x)p’一xp=0.分离变量得[*],即 [*] 由f’(0)=1,得c=1.代入上式,[*]故 ∫[f’’(x)一f’(x)]e-xdx=∫f’’(x)e-xdx—∫f’(x)e-xdx =f’(x)e-x+∫f’(x)e-xdx一∫f’(x)e-xdx =f’(x)e-x+c=[*].

解析 ∫[f’’(x)一f’(x)-]e-xdx=∫f’’(x)e-xdx—∫f’(x)e-xdx=f’(x)e-x+∫f’(x)e-xdx—∫f’(x)e-xdx=f’(x)e-x+c.
    计算该积分的关键是求f’(x).
含有抽象函数导数的积分,一般用分部积分法.
转载请注明原文地址:https://jikaoti.com/ti/cpwRFFFM
0

最新回复(0)