首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
admin
2019-04-08
23
问题
[2005年] 设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( ).
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
因Aα
1
=λ
1
α
1
,Aα
2
=λ
1
α
2
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
,故
知α
1
,A(α
1
+α
2
)线性无关的充分必要条件为
=λ
2
≠0. 仅B入选.[img][/img]
转载请注明原文地址:https://jikaoti.com/ti/cnoRFFFM
0
考研数学一
相关试题推荐
(2015年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数。
(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=___________。
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得aT为θ的无偏估计。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设L:.求曲线L与x轴所围成平面区域D的面积.
已知y1=xex+e2x,y2=xex一e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
(2016年)设函数f(x,y)满足且f(0,y)=y+1,Lt是从点(0,0)到点(1,t)的光滑曲线.计算曲线积分并求I(t)的最小值.
随机试题
进口国政府为使本国国内产业免受或补救进口产品的不利影响而采取的限制进口的保护性措施为()
胃溃疡的手术适应证是什么?
通常颌面部随意皮瓣的长宽之比为
对哺乳动物来说,下列哪种氨基酸是非必需氨基酸
男,45岁。近半年来总是莫名的紧张担忧,凡事总往坏处想。该患者最可能的诊断是()
安徽省内名品之乡众多,其中对应错误的是()。
右边的四个图形中,只有一个是由左边的四个图形拼合而成的,请将其选出。
以保健品名义出现的核酸等“基因食品”对人体健康并无多大帮助。从科学角度看,所谓人体需要补充外源核酸的说法不能成立,人体缺的是营养,而核酸不可能缺,某些广告说人老了或得了病,制造基因的能力会减弱,更是无稽之谈。由此可以推出()。
假定你是李明,根据下面的内容写一封投诉信。1.昨天在超市买的空调不能正常运作;2.要求超市及时提供解决方案,如果不能修理好该空调,将要求退款;3.写信日期:12月18日。注意信函格式!
Areorganicallygrownfoodsthebestfoodchoices?Theadvantagesclaimedforsuchfoodsover【C1】______grownandmarketedfoodpr
最新回复
(
0
)