设A是三阶矩阵,其特征值是1,3,-2,相应的特征向量依次是α1,α2,α3,若P= (α1,2α3,-α2),则P-1AP=( )

admin2016-05-31  18

问题 设A是三阶矩阵,其特征值是1,3,-2,相应的特征向量依次是α1,α2,α3,若P=
1,2α3,-α2),则P-1AP=(    )

选项 A、 
B、 
C、 
D、 

答案A

解析 由Aα2=3α2,有A(-α2)=3(-α2),即当α2是矩阵A属于特征值λ=3的特征向量时,-α2仍是矩阵A属于特征值λ=3的特征向量.同理,2α3仍是矩阵A属于特征值λ=-2的特征向量.
    当P-1AP=A时,P由A的特征向量所构成,A由A的特征值所构成,且P与A的位置是对应一致的,已知矩阵A的特征值是1,3,-2,故对角矩阵A应当由1,3,-2构成,因此排除选项B、C.
  由于2α3是属于λ=-2的特征向量,所以-2在对角矩阵A中应当是第2列,所以应选A.
转载请注明原文地址:https://jikaoti.com/ti/c6xRFFFM
0

相关试题推荐
随机试题
最新回复(0)