设函数u=f(x,y)具有二阶连续偏导数,且满足等式,确定a,b的值,使等式在变换ξ=x+ay,η=x+by下化简为。

admin2019-03-21  46

问题 设函数u=f(x,y)具有二阶连续偏导数,且满足等式,确定a,b的值,使等式在变换ξ=x+ay,η=x+by下化简为

选项

答案由复合函数的链导法则得 [*] 所以[*] 由[*],得 [*], 因而[*] 解得[*]

解析 [分析]  利用复合函数的链导法则变形原等式即可.
[评注]  此题主要考查复合函数链导法则的熟练运用,是对运算能力的考核.
转载请注明原文地址:https://jikaoti.com/ti/bmLRFFFM
0

最新回复(0)