已知P-1AP=.α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )

admin2019-03-11  38

问题 已知P-1AP=.α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是    (    )

选项 A、[α1,一α2,α3]
B、[α1,α23,α2—2α3]
C、[α1,α3,α2]
D、[α12,α1一α2,α3]

答案D

解析 若P-1AP=A=,P=[α1,α2,α3],则有AP=PA,即A[α1,α2,α3]=[α1,α2,α3]
即    [Aα1,Aα2,Aα3]=[a1α1,a2α2,a3α3].
    可见αi是矩阵A属于特征值ai(i=1,2,3)的特征向量,又因矩阵P可逆,因此,α1,α2,α3线性无关.
    若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故(A)正确.
    若α,β是属于特征值λ的特征向量,则k1α+k2β仍是属于特征值λ的特征向量.本题中,α2,α3是属于λ=6的线性无关的特征向量,故α23,α2—2α3仍是λ=6的特征向量,并且α23,α2—2α3线性无关,故(B)正确.
    对于(C),因为α2,α3均是λ=6的特征向量,所以α2,α3不论先后均正确,即(C)正确.
    由于α1,α2是不同特征值的特征向量,因此α12,α1一α2不再是矩阵A的特征向量,故(D)错误.
转载请注明原文地址:https://jikaoti.com/ti/baBRFFFM
0

最新回复(0)