首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
admin
2018-07-23
74
问题
设a为常数,讨论两曲线y=e
x
与
的公共点的个数及相应的a的取值范围.
选项
答案
若a=0,则易知y=e
x
与y=0无公共点,以下设a≠0.讨论y=e
x
与[*]交点的个数,等同于讨论方程[*]的根的个数,亦即等同于讨论函数 f(x)=xe
x
-a 的零点个数. [*] 得唯一驻点x
0
=-1.当x<-1时,fˊ(x)<0;当x>-1时,fˊ(x)>0.所以 min{f(x)}=f(-1)=-e
-1
-a. 又 [*] ①设-e
-1
-a >0,即设a<-e
-1
,则min{ f (x)}>0,f (x)无零点; ②设-e
-1
-a=0,即设a=-e
-1
,则f(x)有唯一零点x
0
=-1; ③设-e
-1
-a <0,即设a>-e
-1
.又分两种情形: (i)设-e
-1
<a<0.则有f(-∞)=-a >0.f(-1)=-e
-1
-a <0.而在区间(-∞,-1)内f(x)单调递减,在区间(-1,+∞)内f(x)单调递增.故f(x)有且仅有两个零; (ii)设a>0.易知f(x)=xe
x
在区间(-∞,0]内无零点,而在区间(0,+∞)内,f(0)=-a <0,f(+∞)=+∞,fˊ(x)=(x+1)e
x
>0,所以f(x)在区间(0,+∞)内刚好有1个零点.讨论完毕. 综上,结论是: 当a<-e
-1
或a=0时,无交点;当a=-e
-1
时,有唯一交点(切点);当-e
-1
<a<0时.有两个交点;当a>0时,在区间(-∞,0]内无交点.而在区间(0,+∞)内,即第一象限内有唯一交点.
解析
转载请注明原文地址:https://jikaoti.com/ti/bTWRFFFM
0
考研数学二
相关试题推荐
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
(1999年试题,十二)设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T(1)p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,
(I)由题设,AX=β的解不唯一,从而其系数矩阵的秩与增广矩阵阵的秩相同但小于3.对增广矩阵做初等行变换,得[*]
设4阶矩阵且矩阵A满足关系式A(E—C-1B)TCT=E,其中E为4阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵.将上述关系式化简并求矩阵A.
设A=,B=P-1AP,其中P为3阶可逆矩阵,则B2004-2A2=__________.
已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位矩阵,求X.
设函数y=f(x)由方程e2x+y-cos(xy)=e—1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_______.
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.求铁板的厚度.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
当0≤θ≤π时,对数螺旋r=eθ的弧长为__________.
随机试题
资产负债表中的“应付账款”项目填列的依据是______。
病理性双侧瞳孔缩小,可见于
慢性骨髓炎最有意义的诊断依据是()
1.蒙医认为人体的本基是
下列不属于账账核对的项目是()。
理财产品按基础资产分类,则各类面临的风险有()。
下列物流分类中,属于制造企业所特有的物流活动是()。
【2016上】材料:杨老师在教学“分数的基本性质”时,设计了这样的教学导入。同学们,在学习新内容之前,我先给大家讲个故事。猴山上的小猴子最喜欢吃猴王做的饼。有一天,猴王做了三块大小一样的饼分给小猴子们吃。它先把第一块饼平均切成四块,分给甲猴一块。乙猴见
用常模进行比较的心理学研究方法是()。
RecentlyallsalesclerkshavebeenawardedotherthanJohn._________________________.
最新回复
(
0
)