首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
admin
2018-08-30
22
问题
总体X~N(2,σ
2
),从X中抽得简单样本X
1
,…,X
n
试推导σ
2
的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ
2
的置信度为0.95的置信区间.(χ
0.975
2
(6)=14.449,χ
0.025
2
(6)=1.237.下侧分位数.)
选项
答案
χ
2
=[*](X
i
-2)
2
~χ
2
(n), ∴1-α=[*] 故σ
2
的置信区间为: [*] 对1-α=0.95,n=6,可算得[*](χ
i
-2)
2
=0.14, 故σ
2
的置信区间为[*]=[0.009689,0.1132].
解析
转载请注明原文地址:https://jikaoti.com/ti/b12RFFFM
0
考研数学一
相关试题推荐
已知随机变量X,Y的概率分布分别为P{X=-1}=,P{X=1}=,并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
设随机变量X与Y相互独立同分布,且X的概率分布为,记U=max(X,Y),V=min(X,Y),试求:(Ⅰ)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=,记Z=X+Y,求E(Z),D(Z).
某装置的平均工作温度据制造厂家称低于190℃.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195℃和8℃,根据这些数据能否支持厂家结论?设α=0.05,并假定工作温度近似服从正态分布.
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
设A,B均是n阶正定矩阵,判断A+B的正定性.
设随机事件A、B及其和事件A∪B的概率分别是0.4,0.3和0.6.若表示B的对立事件,则积事件A的概率P(A)=____________.
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解.(1)求a的值;(2)求齐次方程组(i)的通解;(3)求齐次方程(ii)的通解.
(09年)袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(I)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
随机试题
对装运出口易腐烂变质食品、冷冻品的集装箱进行清洁、卫生、冷藏效能、密固性能等项检验,即称为()
根据酶的来源及其在血浆中发挥催化功能的情况,不属于血浆特异酶的是
双氯芬酸钠是()。
在行政诉讼中,作为被告的行政机关拒不履行人民法院的生效判决,人民法院可以采取()措施。
我国的市场利率体系主要包括()。
当x>0时,证明:
设z=z(x,y)由F(az-by,bx-cz,cy-ax)=0确定,其中函数F连续可偏导且aF’-cF’2≠0,则
Mankindmustfirstofalleat,drink,haveshelterandclothing______itcanpursuepolitics,science,art,religion,etc.
Itisself-evidentthatvehiclesasthemeansoftransportareplayingmoreandmoreimportantpartinmodernlife.Butwithinc
Theycallthemthenewbreadearners.Theyarewomen,andtheyaresettotakeover.Womenarebeginningtorise【1】totheto
最新回复
(
0
)