设f(x)在区间[a,b]上可导,且满足f(b).cosb=.cosxdx。证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ。

admin2018-01-30  30

问题 设f(x)在区间[a,b]上可导,且满足f(b).cosb=.cosxdx。证明至少存在一点ξ∈(a,b),使得f(ξ)=f(ξ).tanξ。

选项

答案由f(x)在区间[a,b]上可导,知f(x)在区间[a,b]上连续,从而F(x)=f(x).cosx 在[a,[*]]上连续,由积分中值定理,知存在一点c∈[a,[*]]使得 F(b)=f(b)cosb=[*]f(x).cosxdx =[*] =F(c)。 在[c,b]上,由罗尔定理得至少存在一点ξ∈(c,b)[*](a,b),使 F(ξ)=f(ξ)cosξ一f(ξ)sinξ=0, 即得f(ξ)=f(ξ)tanξ,ξ∈(a,b)。

解析
转载请注明原文地址:https://jikaoti.com/ti/aydRFFFM
0

最新回复(0)