首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
admin
2019-08-12
48
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
,α
4
线性无关,则与(Ⅰ)等价的向量组是 ( )
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
B、α
1
-α
2
,α
2
-α
3
,α
3
一α
4
,α
4
-α
1
C、α
1
+α
2
,α
2
一α
3
,α
3
+α
4
,α
4
-α
1
D、α
1
+α
2
,α
2
一α
3
,α
3
一α
4
,α
4
-α
1
答案
D
解析
因(A)α
1
+α
2
一(α
2
+α
3
)+(α
3
+α
4
)一(α
4
+α
1
)=0;
(B)(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
4
)+(α
4
-α
1
)=0;
(C)(α
1
+α
2
)一(α
2
一α
3
)一(α
3
+α
4
)+(α
4
-α
1
)=0,
故均线性相关,而[α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
]=[α
1
,α
2
,α
3
,α
4
]
=[α
1
,α
2
,α
3
,α
4
]C
其中
=2≠0.
故α
1
+α
2
,α
2
一α
3
,α
3
一α
4
,α
4
一α
1
线性无关,两向量组等价.
转载请注明原文地址:https://jikaoti.com/ti/awERFFFM
0
考研数学二
相关试题推荐
(08年)微分方程(y+x2e-x)dx—xdy=0的通解是y=______.
(87年)曲线y=arctanx在横坐标为1的点处的切线方程是_______;法线方程是_______.
(90年)已知函数f(x)具有任意阶导数,且f’(x)=[f(x)]2.则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是
(89年)设两函数f(x)和g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处
求方程y(4)-y"=0的一个特解,使其在x→0时与x3为等价无穷小.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βa线性表示,则
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设n为正整数,F(x)=∫1nxe-t3dt+∫ee(n+1)xdt.(I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an;(Ⅱ)证明{an}随n的增加而严格单调减少且=0.
随机试题
AcontroversialdecisionbyLondon’smayor,SadiqKhan,toallowthedemolitionofaflagshipMarks&SpencerstoreonLondon’s
《秋水》是一篇叙述生动的记叙文。()
患者,女,40岁。每于经净后1~2日小腹隐痛,喜按,阴部空坠,月经量少,色淡质稀,倦怠乏力,头晕心悸,舌淡苔薄,脉细弱。其证候是
下列不属于行政监察范围的是()。
语音构成的基本要素包括
Afieldissimplyasocialsystemofrelationsbetweenindividualsorinstitutionswhoarecompetingforthesamestake.Anexam
编写如下通用过程:SubProc(xAsSingle,yAsSingle)t=xx=t/yy=tModyEndSub在窗体上画一个命令按钮,然后编写如下事件过程:
在窗体上画三个名称分别为Text1、List1和Command1的文本框、列表框和命令按钮,且List1中有若干列表项,Text1的内容为空,然后编写如下事件过程:PrivateSubCommand1_Click()DimiAs
在“成绩表”中有字段:平时成绩、期中考试、期末考试和总评成绩。其中,总评成绩=平时成绩+期中考试×20%+期末考试×70%,在建表时应将字段“总评成绩”的数据类型定义为()。
Thewomanworkedoffthefataroundher______bydoingexerciseeverymorning.
最新回复
(
0
)