首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明: (1)存在η∈,使得f(η)=η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明: (1)存在η∈,使得f(η)=η; (2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
admin
2018-05-22
37
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,
=1,f(1)=0.证明:
(1)存在η∈
,使得f(η)=η;
(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
选项
答案
(1)令φ(x)=f(x)=x,φ(x)在[0,1]上连续,[*],φ(1)=-1<0, 由零点定理,存在η∈[*],使得φ(η)=0,即f(η)=η. (2)设F(x)=e
-kx
φ(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0, 由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)-k[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/aCdRFFFM
0
考研数学二
相关试题推荐
(2000年试题,二)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
(1998年试题,一)曲线y=一x3+x2+2x与x轴围成的图形的面积(不考虑负面积)S=__________.
(2006年试题,二)设f(x,y)为连续函数,则等于().
(2011年试题,一)设A为三阶矩阵,将A的第2列加到第1列得矩阵B.再交换曰的第2行与第3行得单位矩阵,记则A=().
如图1—3—17,一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y与x2+y2=1连接而成的.(1)求容器的体积;(2)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
2∫-∞atetdt=∫-∞atd(t)=tet|-∞a-∫-∞aetdt=aea-ea由ea=aea-ea得a=2
当x→1时,无穷小~A(x+1)k,则A=_____,k=______.
设A是n×n矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
设f(x)是连续函数,a,b为常数,则下列说法中不正确的是[].
随机试题
石方开挖可能需要用到的机械有()。
下列能与异羟肟酸铁反应的是()。
对于工作量大、项目周期长的项目宜采取()组织结构。
可转换证券的市场价格必须保持在它的理论价值和转换价值之下。()
—David,turnofftheTV______nooneiswatchingit.—Butit______offalready!Themusicisfromtheradio.
4,11,30,67,()
A、5B、4C、3D、2A两组中都有“▲、☆、△、◎、▽”5个相同字符。
()是我国实现社会主义民主的基本形式。
Millennialswere【B1】______tobethenextgoldenticketforretailers.A70millionconsumers【B2】______betweentheagesof18and
ChristmasistheanniversaryofthebirthofChrist,generallycelebratedonDecember25.Itisoneofthechieffestivalsofth
最新回复
(
0
)