首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2016-10-13
40
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.
证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f"(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx=x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x—x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)一x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://jikaoti.com/ti/a5wRFFFM
0
考研数学一
相关试题推荐
[*]
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立,解此关于a,k的方程组可得a=-1,k=1.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设f(x)在x=0的某邻域内二阶连续可导,且.证明:级数绝对收敛.
sinx2dx为().
随机试题
背景某办公楼工程,地上8层,采用钢筋混凝土框架结构,设计图中有一层地下车库,外墙为剪力墙,中间部位均为框架结构。填充墙砌体采用混凝土小型空心砌块砌体。本工程基础底板为整体筏板,由于当地地下水平埋深比较浅,混凝土设计强度等级为C30P8,总方量约1300
友谊服装厂2005年1—8月份各月的产量如下所示,试用加权移动平均预测其9、10月份的产量。(单位:万件;n=3;赋予最近一期观察值权数为4,其余两期为2)
我国刑事诉讼法规定,凡是知道案件情况的人,都有作证的义务。()
A.聚集B.叠连C.凝集D.凝固组织破损时,创面上的血液发生的变化是
组织等节奏流水施工的前提是( )。
当企业拥有向第三方索赔的权利而涉及补偿金额时,该补偿金额单独作为一项资产确认的条件之一是()。
对于保管期满但未结清的债权债务以及涉及其他未了事项的原始凭证不得销毁,应作永久保留。()
下列各项中关于企业存货减值的表述正确的有()。
对于公共福利发展,社会工作者不应()。
随着生活水平的提高,出国旅游的国人越来越多。然而,许多陋习也被带了出去,令中国游客在国际上的形象_______。我们不能要求每个人都成为文明的_______,但至少我们每个人都可以坚守文明_______。填入画横线部分最恰当的一项是:
最新回复
(
0
)