设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型 f(x1,x2,…,xn)=— 为正定二次型.

admin2019-01-23  33

问题 设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型
f(x1,x2,…,xn)=—
为正定二次型.

选项

答案[*] 由于A正定,故|A|>0,且A-1正定,故对于任意X≠0,X∈Rn,有XTA-1X>0.故f(x1,x2,…,xn)=[*]正定。

解析
转载请注明原文地址:https://jikaoti.com/ti/a11RFFFM
0

最新回复(0)