首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 求a,b的值.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 求a,b的值.
admin
2017-06-14
49
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.
求a,b的值.
选项
答案
二次型f的矩阵为 [*] 设A的特征值为λ
i
(i=1,2,3). 由题设,有λ
1
+λ
2
+λ
3
=a+2+(-2)=1,λ
1
.λ
2
.λ
3
= [*] =-4a-2b
2
=-12. 得a=1,b=-2.
解析
转载请注明原文地址:https://jikaoti.com/ti/a0wRFFFM
0
考研数学一
相关试题推荐
微分方程xy’+2y=xlnx满足y(1)=-1/9的解为__________.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
随机试题
CO2气体保护焊常用焊丝牌号是()。
透析疗法的适应症不包括
下列哪项不是眩晕痰浊上蒙的主症
凡无法律上或合同上的依据使自己获得利益而使他人受到损害的情况被称为“不当得利”。各国关于不当得利法律适用的观点有以下哪些?()
下列属于流动资产的是( )。
教学技能这一程序性知识的获得首先要经过陈述性知识的获得阶段,即必须知道“是什么”和“为什么”;然后才能正确和有效地解决“如何做”和“怎么办”的问题。()
中国第一水乡周庄,未出名之前,是小桥流水,粉墙黛瓦,天蓝水清,枕河人家宁静而______地生活着。30年前,来了一个叫陈逸飞的画家,被这里江南水乡的恬淡所感动,画了一幅同样意境______的油画——《故乡的回忆.双桥》,后被石油大亨哈默收藏,于是世界知道了
12,12,18,36,90,(),945
1926年9月1日,毛泽东发表《:国民革命与农民运动》一文,指出国民革命的中心问题()
Isthewomanverysurethatshecanmeetthedeadlineatthebeginningoftheconversation?
最新回复
(
0
)